IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v24y2010i9p1779-1790.html
   My bibliography  Save this article

Regional Flood Frequency Analysis of North-Bank of the River Brahmaputra by Using LH-Moments

Author

Listed:
  • Abhijit Bhuyan
  • Munindra Borah
  • Rakesh Kumar

Abstract

In this study LH-moment proposed by Wang (Water Resour Res 33(12):2841–2848, 1997 ) has been used for regional flood frequency analysis of the North-Bank region of the river Brahmaputra, India. Three probability distributions i.e. generalized extreme value (GEV), generalized logistic (GLO) and generalized Pareto (GPA) has been used for each level of LH-moments i.e. L, L 1 , L 2 , L 3 and L 4 . The regional frequency analysis procedure proposed by Hosking and Wallis (Water Resour Res 29(2):271–281, 1993 ) for L-moments i.e. discordancy measure for screening the data, heterogeneity measure for formation of homogeneous region and goodness-of-fit test have been used for each level of LH-moments. Based on the LH-moment ratio diagram and ∣Z∣-statistic criteria, GEV distribution for level one LH-moment is identified as the robust distribution for the study area. For estimation of floods of various return periods for both gauged and ungauged catchments of the study area, regional flood frequency relationships have been developed by using the level one LH-moment based on GEV distribution. A comparative study has been performed between L-moments and LH-moments for the study area. It is observed from comparative study that the regional flood frequency analysis based on the GEV distribution by using level one LH-moment (L 1 ) is superior to the use of L-moments. Copyright Springer Science+Business Media B.V. 2010

Suggested Citation

  • Abhijit Bhuyan & Munindra Borah & Rakesh Kumar, 2010. "Regional Flood Frequency Analysis of North-Bank of the River Brahmaputra by Using LH-Moments," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(9), pages 1779-1790, July.
  • Handle: RePEc:spr:waterr:v:24:y:2010:i:9:p:1779-1790
    DOI: 10.1007/s11269-009-9524-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-009-9524-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-009-9524-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. B. Parida & R. Kachroo & D. Shrestha, 1998. "Regional Flood Frequency Analysis of Mahi-Sabarmati Basin (Subzone 3-a) using Index Flood Procedure with L-Moments," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 12(1), pages 1-12, February.
    2. Isameldin Atiem & Nilgün Harmancio˘lu, 2006. "Assessment of Regional Floods Using L-Moments Approach: The Case of The River Nile," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 20(5), pages 723-747, October.
    3. Rakesh Kumar & C. Chatterjee & Sanjay Kumar & A. Lohani & R. Singh, 2003. "Development of Regional Flood Frequency Relationships Using L-moments for Middle Ganga Plains Subzone 1(f) of India," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 17(4), pages 243-257, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sonali Swetapadma & C. S. P. Ojha, 2020. "Selection of a basin-scale model for flood frequency analysis in Mahanadi river basin, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(1), pages 519-552, May.
    2. R. K. Jaiswal & T. R. Nayak & A. K. Lohani & R. V. Galkate, 2022. "Regional flood frequency modeling for a large basin in India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(2), pages 1845-1861, March.
    3. S. Baidya & Ajay Singh & Sudhindra N. Panda, 2020. "Flood frequency analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(3), pages 1137-1158, February.
    4. J. Ayuso-Muñoz & A. García-Marín & P. Ayuso-Ruiz & J. Estévez & R. Pizarro-Tapia & E. Taguas, 2015. "A More Efficient Rainfall Intensity-Duration-Frequency Relationship by Using an “at-site” Regional Frequency Analysis: Application at Mediterranean Climate Locations," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(9), pages 3243-3263, July.
    5. Xiaohui Yuan & Bin Ji & Hao Tian & Yuehua Huang, 2014. "Multiscaling Analysis of Monthly Runoff Series Using Improved MF-DFA Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(12), pages 3891-3903, September.
    6. Rakesh Kumar & Narendra Goel & Chandranath Chatterjee & Purna Nayak, 2015. "Regional Flood Frequency Analysis using Soft Computing Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 1965-1978, April.
    7. Sanat Nalini Sahoo & P. Sreeja, 2016. "Relationship between peak rainfall intensity (PRI) and maximum flood depth (MFD) in an urban catchment of Northeast India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(3), pages 1527-1544, September.
    8. M. Reddy & Poulomi Ganguli, 2012. "Bivariate Flood Frequency Analysis of Upper Godavari River Flows Using Archimedean Copulas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(14), pages 3995-4018, November.
    9. Yuyin Liang & Shuguang Liu & Yiping Guo & Hong Hua, 2017. "L-Moment-Based Regional Frequency Analysis of Annual Extreme Precipitation and its Uncertainty Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(12), pages 3899-3919, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Reddy & Poulomi Ganguli, 2012. "Bivariate Flood Frequency Analysis of Upper Godavari River Flows Using Archimedean Copulas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(14), pages 3995-4018, November.
    2. Betül Saf, 2009. "Regional Flood Frequency Analysis Using L-Moments for the West Mediterranean Region of Turkey," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(3), pages 531-551, February.
    3. Reza Modarres, 2008. "Regional Frequency Distribution Type of Low Flow in North of Iran by L-moments," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(7), pages 823-841, July.
    4. Zamir Hussain & G. Pasha, 2009. "Regional Flood Frequency Analysis of the Seven Sites of Punjab, Pakistan, Using L-Moments," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(10), pages 1917-1933, August.
    5. Neslihan Seckin & Murat Cobaner & Recep Yurtal & Tefaruk Haktanir, 2013. "Comparison of Artificial Neural Network Methods with L-moments for Estimating Flood Flow at Ungauged Sites: the Case of East Mediterranean River Basin, Turkey," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2103-2124, May.
    6. Saralees Nadarajah & M. Ali, 2008. "Pareto Random Variables for Hydrological Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(10), pages 1381-1393, October.
    7. R. K. Jaiswal & T. R. Nayak & A. K. Lohani & R. V. Galkate, 2022. "Regional flood frequency modeling for a large basin in India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(2), pages 1845-1861, March.
    8. Reza Zamani & Hossein Tabari & Patrick Willems, 2015. "Extreme streamflow drought in the Karkheh river basin (Iran): probabilistic and regional analyses," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(1), pages 327-346, March.
    9. Leonardo Noto & Goffredo La Loggia, 2009. "Use of L-Moments Approach for Regional Flood Frequency Analysis in Sicily, Italy," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(11), pages 2207-2229, September.
    10. Zamir Hussain, 2017. "Estimation of flood quantiles at gauged and ungauged sites of the four major rivers of Punjab, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(1), pages 107-123, March.
    11. Reza Modarres, 2010. "Regional Dry Spells Frequency Analysis by L-Moment and Multivariate Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 2365-2380, August.
    12. A. Agarwal & R. Maheswaran & J Kurths & R. Khosa, 2016. "Wavelet Spectrum and Self-Organizing Maps-Based Approach for Hydrologic Regionalization -a Case Study in the Western United States," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4399-4413, September.
    13. T. K. Drissia & V. Jothiprakash & A. B. Anitha, 2019. "Flood Frequency Analysis Using L Moments: a Comparison between At-Site and Regional Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(3), pages 1013-1037, February.
    14. Pankaj Mani & Chandranath Chatterjee & Rakesh Kumar, 2014. "Flood hazard assessment with multiparameter approach derived from coupled 1D and 2D hydrodynamic flow model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(2), pages 1553-1574, January.
    15. Ceyhun Ozcelik, 2021. "A Regional Approach for Investigation of Temporal Precipitation Changes," Sustainability, MDPI, vol. 13(10), pages 1-29, May.
    16. Sheng Yue & Chun Wang, 2004. "Possible Regional Probability Distribution Type of Canadian Annual Streamflow by L-moments," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 18(5), pages 425-438, October.
    17. Felício Cassalho & Samuel Beskow & Carlos Rogério Mello & Maíra Martim Moura & Laura Kerstner & Leo Fernandes Ávila, 2018. "At-Site Flood Frequency Analysis Coupled with Multiparameter Probability Distributions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(1), pages 285-300, January.
    18. J. Ayuso-Muñoz & A. García-Marín & P. Ayuso-Ruiz & J. Estévez & R. Pizarro-Tapia & E. Taguas, 2015. "A More Efficient Rainfall Intensity-Duration-Frequency Relationship by Using an “at-site” Regional Frequency Analysis: Application at Mediterranean Climate Locations," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(9), pages 3243-3263, July.
    19. Sonali Swetapadma & C. S. P. Ojha, 2020. "Selection of a basin-scale model for flood frequency analysis in Mahanadi river basin, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(1), pages 519-552, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:24:y:2010:i:9:p:1779-1790. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.