IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v23y2009i5p853-867.html
   My bibliography  Save this article

Modeling Evaporation-Seepage Losses for Reservoir Water Balance in Semi-arid Regions

Author

Listed:
  • C. Sivapragasam
  • G. Vasudevan
  • J. Maran
  • C. Bose
  • S. Kaza
  • N. Ganesh

Abstract

In the water balance of reservoir system, evaporation plays a crucial role particularly so for the reservoir systems of smaller size located in the semi-arid or arid regions. Such regions are most often characterized by significant seepage losses from reservoirs, besides evaporation losses. Usually, in the optimization of a reservoir system, it is a common practice to assume evaporation loss either as some constant value or as negligible. Such assumptions, however, may affect the results of reservoir optimization. This is demonstrated in this study by a case study in the optimal scheduling of Pilavakkal reservoir system in Vaipar basin of Tamilnadu, India. For modeling reservoir losses, many models are available, of which, Penman combination model is most commonly used. In this study, an alternative approach based on Genetic Programming (GP) is proposed. The results of GP and Penman model for both evaporation loss estimation and reservoir scheduling are compared. It is found that while GP and Penman combination model performs equally well for estimating evaporation losses, GP is also able to model seepage losses (or other losses from reservoir) to a much better degree. It is also shown the reservoir scheduling does get influenced based on how the reservoir losses are modeled in the reservoir water balance equation. Copyright Springer Science+Business Media B.V. 2009

Suggested Citation

  • C. Sivapragasam & G. Vasudevan & J. Maran & C. Bose & S. Kaza & N. Ganesh, 2009. "Modeling Evaporation-Seepage Losses for Reservoir Water Balance in Semi-arid Regions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(5), pages 853-867, March.
  • Handle: RePEc:spr:waterr:v:23:y:2009:i:5:p:853-867
    DOI: 10.1007/s11269-008-9303-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-008-9303-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-008-9303-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. Shiau & H. Lee, 2005. "Derivation of Optimal Hedging Rules for a Water-supply Reservoir through Compromise Programming," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 19(2), pages 111-132, April.
    2. A. Ganji & D. Khalili & M. Karamouz & K. Ponnambalam & M. Javan, 2008. "A Fuzzy Stochastic Dynamic Nash Game Analysis of Policies for Managing Water Allocation in a Reservoir System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(1), pages 51-66, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jure Margeta & Zvonimir Glasnovic, 2011. "Hybrid RES-HEP Systems Development," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(9), pages 2219-2239, July.
    2. Montserrat Núñez & Jordi Oliver-Solà & Joan Rieradevall & Xavier Gabarrell, 2010. "Water Management in Integrated Service Systems: Accounting for Water Flows in Urban Areas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(8), pages 1583-1604, June.
    3. José Campos, 2010. "Modeling the Yield–Evaporation–Spill in the Reservoir Storage Process: The Regulation Triangle Diagram," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(13), pages 3487-3511, October.
    4. Murat Pinarlik & Adebayo J. Adeloye & Zeliha Selek, 2021. "Impacts of Ignored Evaporation and Sedimentation Fluxes at Planning on Reservoir Performance in Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(11), pages 3539-3570, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehran Homayounfar & Sai Lai & Mehdi Zommorodian & Amin Oroji & Arman Ganji & Sara Kaviani, 2015. "Developing a Non-Discrete Dynamic Game Model and Corresponding Monthly Collocation Solution Considering Variability in Reservoir Inflow," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2599-2618, June.
    2. Yong Peng & Jinggang Chu & Anbang Peng & Huicheng Zhou, 2015. "Optimization Operation Model Coupled with Improving Water-Transfer Rules and Hedging Rules for Inter-Basin Water Transfer-Supply Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3787-3806, August.
    3. Beshavard, Mahdi & Adib, Arash & Ashrafi, Seyed Mohammad & Kisi, Ozgur, 2022. "Establishing effective warning storage to derive optimal reservoir operation policy based on the drought condition," Agricultural Water Management, Elsevier, vol. 274(C).
    4. Alireza Dariane & Farzane Karami, 2014. "Deriving Hedging Rules of Multi-Reservoir System by Online Evolving Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3651-3665, September.
    5. Hui Wang & Junguo Liu, 2013. "Reservoir Operation Incorporating Hedging Rules and Operational Inflow Forecasts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(5), pages 1427-1438, March.
    6. Ben Li & Guangming Tan & Gang Chen, 2016. "Generalized Uncooperative Planar Game Theory Model for Water Distribution in Transboundary Rivers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 225-241, January.
    7. Fang Wan & Wenlin Yuan & Jin Zhou, 2017. "Derivation of Tri-level Programming Model for Multi-Reservoir Optimal Operation in Inter-Basin Transfer-Diversion-Supply Project," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 479-494, January.
    8. Maryam Ghashghaie & Safar Marofi & Hossein Marofi, 2014. "Using System Dynamics Method to Determine the Effect of Water Demand Priorities on Downstream Flow," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(14), pages 5055-5072, November.
    9. Jenq-Tzong Shiau & Hsu-Hui Wen & I-Wen Su, 2021. "Comparing Optimal Hedging Policies Incorporating Past Operation Information and Future Hydrologic Information," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(7), pages 2177-2196, May.
    10. Erica Camnasio & Gianfranco Becciu, 2011. "Evaluation of the Feasibility of Irrigation Storage in a Flood Detention Pond in an Agricultural Catchment in Northern Italy," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(5), pages 1489-1508, March.
    11. Mehran Homayounfar & Arman Ganji & C. Martinez, 2011. "A Novel Solution for Stochastic Dynamic Game of Water Allocation from a Reservoir Using Collocation Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(13), pages 3427-3444, October.
    12. A. Ganji & M. Shekarriz fard, 2010. "A Modified Constrained State Formulation of Stochastic Soil Moisture for Crop Water Allocation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(3), pages 547-561, February.
    13. Xiqin Wang & Yuan Zhang & Yong Zeng & Changming Liu, 2013. "Resolving Trans-jurisdictional Water Conflicts by the Nash Bargaining Method: A Case Study in Zhangweinan Canal Basin in North China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(5), pages 1235-1247, March.
    14. Li, W. & Li, Y.P. & Li, C.H. & Huang, G.H., 2010. "An inexact two-stage water management model for planning agricultural irrigation under uncertainty," Agricultural Water Management, Elsevier, vol. 97(11), pages 1905-1914, November.
    15. Youngkyu Jin & Sangho Lee, 2019. "Comparative Effectiveness of Reservoir Operation Applying Hedging Rules Based on Available Water and Beginning Storage to Cope with Droughts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(5), pages 1897-1911, March.
    16. Hadi Tarebari & Amir Hossein Javid & Seyyed Ahmad Mirbagheri & Hedayat Fahmi, 2018. "Multi-Objective Surface Water Resource Management Considering Conflict Resolution and Utility Function Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(14), pages 4487-4509, November.
    17. Mike Spiliotis & Luis Mediero & Luis Garrote, 2016. "Optimization of Hedging Rules for Reservoir Operation During Droughts Based on Particle Swarm Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(15), pages 5759-5778, December.
    18. Jenq-Tzong Shiau & Ya-Yi Hsiao, 2012. "Water-deficit-based drought risk assessments in Taiwan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(1), pages 237-257, October.
    19. Simona Consoli & Benedetto Matarazzo & Nello Pappalardo, 2008. "Operating Rules of an Irrigation Purposes Reservoir Using Multi-Objective Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(5), pages 551-564, May.
    20. Ben Li & Guangming Tan & Gang Chen, 2016. "Generalized Uncooperative Planar Game Theory Model for Water Distribution in Transboundary Rivers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 225-241, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:23:y:2009:i:5:p:853-867. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.