IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v24y2010i3p547-561.html
   My bibliography  Save this article

A Modified Constrained State Formulation of Stochastic Soil Moisture for Crop Water Allocation

Author

Listed:
  • A. Ganji
  • M. Shekarriz fard

Abstract

In response to uncertainty in crop water allocation, several methodologies have been proposed in the literature, most of them considering rainfall as a stochastic variable affecting soil moisture. A methodology considering uncertainties both in irrigation depth and soil moisture is more realistic for irrigated crops as developed here using an explicit stochastic optimization model. This new work is based on an earlier constrained state formulation which did not consider the irrigation depth as stochastic. In constrained state formulation methods, the first and second moments of state variables are developed considering the uncertainties which are then used as constraints in an optimization model. In contrast to alternative methods that are dynamic programming-based, the proposed optimization method can be solved using standard nonlinear optimization tools. Performance of the proposed model is evaluated for the case of two different crops, winter wheat and barley. Model verification is performed by comparing the results with simulation results. The model is quite acceptable and shows considerable improvement over analogous models. Copyright Springer Science+Business Media B.V. 2010

Suggested Citation

  • A. Ganji & M. Shekarriz fard, 2010. "A Modified Constrained State Formulation of Stochastic Soil Moisture for Crop Water Allocation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(3), pages 547-561, February.
  • Handle: RePEc:spr:waterr:v:24:y:2010:i:3:p:547-561
    DOI: 10.1007/s11269-009-9458-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-009-9458-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-009-9458-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. P. Guo & G. Huang & L. He & H. Zhu, 2009. "Interval-parameter Two-stage Stochastic Semi-infinite Programming: Application to Water Resources Management under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(5), pages 1001-1023, March.
    2. A. Ganji & D. Khalili & M. Karamouz & K. Ponnambalam & M. Javan, 2008. "A Fuzzy Stochastic Dynamic Nash Game Analysis of Policies for Managing Water Allocation in a Reservoir System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(1), pages 51-66, January.
    3. Tsakiris, G. P., 1982. "A method for applying crop sensitivity factors in irrigation scheduling," Agricultural Water Management, Elsevier, vol. 5(4), pages 335-343, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ghazali, Mahboubeh & Honar, Tooraj & Nikoo, Mohammad Reza, 2018. "A hybrid TOPSIS-agent-based framework for reducing the water demand requested by stakeholders with considering the agents’ characteristics and optimization of cropping pattern," Agricultural Water Management, Elsevier, vol. 199(C), pages 71-85.
    2. Mehran Homayounfar & Sai Lai & Mehdi Zomorodian & Ali Sepaskhah & Arman Ganji, 2014. "Optimal Crop Water Allocation in Case of Drought Occurrence, Imposing Deficit Irrigation with Proportional Cutback Constraint," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 3207-3225, August.
    3. Lu Zhuo & Dawei Han & Qiang Dai & Tanvir Islam & Prashant Srivastava, 2015. "Appraisal of NLDAS-2 Multi-Model Simulated Soil Moistures for Hydrological Modelling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3503-3517, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. F. Wang & G. H. Huang & Y. Fan & Y. P. Li, 2020. "Robust Subsampling ANOVA Methods for Sensitivity Analysis of Water Resource and Environmental Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(10), pages 3199-3217, August.
    2. Mehran Homayounfar & Sai Lai & Mehdi Zommorodian & Amin Oroji & Arman Ganji & Sara Kaviani, 2015. "Developing a Non-Discrete Dynamic Game Model and Corresponding Monthly Collocation Solution Considering Variability in Reservoir Inflow," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2599-2618, June.
    3. Mohammad Nikoo & Reza Kerachian & Hamed Poorsepahy-Samian, 2012. "An Interval Parameter Model for Cooperative Inter-Basin Water Resources Allocation Considering the Water Quality Issues," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(11), pages 3329-3343, September.
    4. Zhang, Fan & Zhang, Chenglong & Yan, Zehao & Guo, Shanshan & Wang, Youzhi & Guo, Ping, 2018. "An interval nonlinear multiobjective programming model with fuzzy-interval credibility constraint for crop monthly water allocation," Agricultural Water Management, Elsevier, vol. 209(C), pages 123-133.
    5. Ben Li & Guangming Tan & Gang Chen, 2016. "Generalized Uncooperative Planar Game Theory Model for Water Distribution in Transboundary Rivers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 225-241, January.
    6. Gaiqiang Yang & Ping Guo & Mo Li & Shiqi Fang & Liudong Zhang, 2016. "An Improved Solving Approach for Interval-Parameter Programming and Application to an Optimal Allocation of Irrigation Water Problem," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 701-729, January.
    7. C. Li & L. Zhang, 2015. "An Inexact Two-Stage Allocation Model for Water Resources Management Under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 1823-1841, April.
    8. Maryam Ghashghaie & Safar Marofi & Hossein Marofi, 2014. "Using System Dynamics Method to Determine the Effect of Water Demand Priorities on Downstream Flow," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(14), pages 5055-5072, November.
    9. Mehran Homayounfar & Sai Lai & Mehdi Zomorodian & Ali Sepaskhah & Arman Ganji, 2014. "Optimal Crop Water Allocation in Case of Drought Occurrence, Imposing Deficit Irrigation with Proportional Cutback Constraint," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 3207-3225, August.
    10. Mehran Homayounfar & Arman Ganji & C. Martinez, 2011. "A Novel Solution for Stochastic Dynamic Game of Water Allocation from a Reservoir Using Collocation Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(13), pages 3427-3444, October.
    11. Xiqin Wang & Yuan Zhang & Yong Zeng & Changming Liu, 2013. "Resolving Trans-jurisdictional Water Conflicts by the Nash Bargaining Method: A Case Study in Zhangweinan Canal Basin in North China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(5), pages 1235-1247, March.
    12. Li, W. & Li, Y.P. & Li, C.H. & Huang, G.H., 2010. "An inexact two-stage water management model for planning agricultural irrigation under uncertainty," Agricultural Water Management, Elsevier, vol. 97(11), pages 1905-1914, November.
    13. Gaiqiang Yang & Ping Guo & Mo Li & Shiqi Fang & Liudong Zhang, 2016. "An Improved Solving Approach for Interval-Parameter Programming and Application to an Optimal Allocation of Irrigation Water Problem," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 701-729, January.
    14. Zhang, Fan & Cui, Ningbo & Guo, Shanshan & Yue, Qiong & Jiang, Shouzheng & Zhu, Bin & Yu, Xiuyun, 2023. "Irrigation strategy optimization in irrigation districts with seasonal agricultural drought in southwest China: A copula-based stochastic multiobjective approach," Agricultural Water Management, Elsevier, vol. 282(C).
    15. Shang, Songhao & Mao, Xiaomin, 2006. "Application of a simulation based optimization model for winter wheat irrigation scheduling in North China," Agricultural Water Management, Elsevier, vol. 85(3), pages 314-322, October.
    16. G. Tsakiris & I. Nalbantis & H. Vangelis & B. Verbeiren & M. Huysmans & B. Tychon & I. Jacquemin & F. Canters & S. Vanderhaegen & G. Engelen & L. Poelmans & P. Becker & O. Batelaan, 2013. "A System-based Paradigm of Drought Analysis for Operational Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(15), pages 5281-5297, December.
    17. Hadi Tarebari & Amir Hossein Javid & Seyyed Ahmad Mirbagheri & Hedayat Fahmi, 2018. "Multi-Objective Surface Water Resource Management Considering Conflict Resolution and Utility Function Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(14), pages 4487-4509, November.
    18. M. Li & P. Guo & G. Yang & S. Fang, 2014. "IB-ICCMSP: An Integrated Irrigation Water Optimal Allocation and Planning Model Based on Inventory Theory under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(1), pages 241-260, January.
    19. Wen, Yeqiang & Shang, Songhao & Yang, Jian, 2017. "Optimization of irrigation scheduling for spring wheat with mulching and limited irrigation water in an arid climate," Agricultural Water Management, Elsevier, vol. 192(C), pages 33-44.
    20. C. Sivapragasam & G. Vasudevan & J. Maran & C. Bose & S. Kaza & N. Ganesh, 2009. "Modeling Evaporation-Seepage Losses for Reservoir Water Balance in Semi-arid Regions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(5), pages 853-867, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:24:y:2010:i:3:p:547-561. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.