IDEAS home Printed from https://ideas.repec.org/a/spr/masfgc/v23y2018i1d10.1007_s11027-016-9727-7.html
   My bibliography  Save this article

Attribution assessment and projection of natural runoff change in the Yellow River Basin of China

Author

Listed:
  • Zhe Yuan

    (Changjiang River Scientific Research Institute
    China Institute of Water Resources and Hydropower Research)

  • Denghua Yan

    (China Institute of Water Resources and Hydropower Research)

  • Zhiyong Yang

    (China Institute of Water Resources and Hydropower Research)

  • Jijun Xu

    (Changjiang River Scientific Research Institute)

  • Junjun Huo

    (Changjiang River Scientific Research Institute)

  • Yanlai Zhou

    (Changjiang River Scientific Research Institute)

  • Cheng Zhang

    (China Institute of Water Resources and Hydropower Research)

Abstract

Climate variability and human activities are two driving factors in the hydrological cycle. The analysis of river basin hydrological response to this change in the past and future is scientifically essential for the improvement of water resource and land management. Using a water balance model based on Fu’ equation, the attribution of climate variability and land-use/land-cover change (LUCC) for natural runoff decrease was quantitatively assessed in the Yellow River Basin (YRB). With five general circulation model (GCM) s’ output provided by The Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP), future runoff in the context of climate change was projected. The results show that (1) compared with other distributed hydrological models, the water balance model in this study has fewer parameters and simpler calculation methods, thus having advantages in hydrological simulation and projection in large scale; (2) during the last 50 years, the annual precipitation and runoff have decreased, while the mean temperature has increased in the YRB. The decrease of natural runoff between natural period (1961 to 1985) and impacted period (1986 to 2011) could be attributed to 27.1–49.8 and 50.2–72.9% from climate variability and LUCC, respectively. As the LUCC is the major driving factor of the decrease in the upper and middle reaches of the YRB, policymakers could focus on water resources management. While climate variability makes more contribution in the middle and lower reaches of the YRB, it is essential to study the impact of future climate change on water resources under different climate change scenarios, for planning and management agencies; (3) temperature and precipitation in the YRB were predicted to increase under RCP4.5. It means that the YRB will become warmer and wetter in the future. If we assume the land-use/land-cover condition during 2011 to 2050 is the same as that during 1986 to 2011, future annual average natural runoff in the YRB will increase by 14.4 to 16.8%. However, future runoff will still be lower than the average value during 1961 to 1985. In other words, although future climate change will cause the increase of natural runoff in the YRB, the negative effect of underlying surface condition variation is stronger. It is necessary to promote the sustainable development and utilization of water resources and to enhance adaptation capacity so as to reduce the vulnerability of the water resources system to climate change and human activities.

Suggested Citation

  • Zhe Yuan & Denghua Yan & Zhiyong Yang & Jijun Xu & Junjun Huo & Yanlai Zhou & Cheng Zhang, 2018. "Attribution assessment and projection of natural runoff change in the Yellow River Basin of China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(1), pages 27-49, January.
  • Handle: RePEc:spr:masfgc:v:23:y:2018:i:1:d:10.1007_s11027-016-9727-7
    DOI: 10.1007/s11027-016-9727-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11027-016-9727-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11027-016-9727-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Boini Narsimlu & Ashvin Gosain & Baghu Chahar, 2013. "Assessment of Future Climate Change Impacts on Water Resources of Upper Sind River Basin, India Using SWAT Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(10), pages 3647-3662, August.
    2. Chong-yu Xu, 2000. "Modelling the Effects of Climate Change on Water Resources in Central Sweden," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 14(3), pages 177-189, June.
    3. Jorge Moraes & Giampaolo Pellegrino & Maria Ballester & Luiz Martinelli & Reynaldo Victoria & Alex Krusche, 1998. "Trends in Hydrological Parameters of a Southern Brazilian Watershed and its Relation to Human Induced Changes," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 12(4), pages 295-311, August.
    4. Xingming Hao & Yaning Chen & Changchun Xu & Weihong Li, 2008. "Impacts of Climate Change and Human Activities on the Surface Runoff in the Tarim River Basin over the Last Fifty Years," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(9), pages 1159-1171, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaqing Feng & Guangxin Zhang & Xiongrui Yin, 2011. "Hydrological Responses to Climate Change in Nenjiang River Basin, Northeastern China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(2), pages 677-689, January.
    2. Chesheng Zhan & Sidong Zeng & Shanshan Jiang & Huixiao Wang & Wen Ye, 2014. "An Integrated Approach for Partitioning the Effect of Climate Change and Human Activities on Surface Runoff," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3843-3858, September.
    3. Mustafa Al-Mukhtar & Volkmar Dunger & Broder Merkel, 2014. "Assessing the Impacts of Climate Change on Hydrology of the Upper Reach of the Spree River: Germany," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 2731-2749, August.
    4. Depeng Zuo & Zongxue Xu & Wei Wu & Jie Zhao & Fangfang Zhao, 2014. "Identification of Streamflow Response to Climate Change and Human Activities in the Wei River Basin, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(3), pages 833-851, February.
    5. Manohar Arora & Pratap Singh & N. Goel & R. Singh, 2008. "Climate Variability Influences on Hydrological Responses of a Large Himalayan Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(10), pages 1461-1475, October.
    6. Lingcheng Li & Liping Zhang & Jun Xia & Christopher Gippel & Renchao Wang & Sidong Zeng, 2015. "Implications of Modelled Climate and Land Cover Changes on Runoff in the Middle Route of the South to North Water Transfer Project in China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2563-2579, June.
    7. Sanjeet Kumar & Ashok Mishra & Umesh Kumar Singh, 2023. "Assessment of Land Cover Changes and Climate Variability Effects on Catchment Hydrology Using a Physically Distributed Model," Sustainability, MDPI, vol. 15(13), pages 1-15, June.
    8. Javier Senent-Aparicio & Sitian Liu & Julio Pérez-Sánchez & Adrián López-Ballesteros & Patricia Jimeno-Sáez, 2018. "Assessing Impacts of Climate Variability and Reforestation Activities on Water Resources in the Headwaters of the Segura River Basin (SE Spain)," Sustainability, MDPI, vol. 10(9), pages 1-13, September.
    9. Carolina Natel Moura & Sílvio Luís Rafaeli Neto & Claudia Guimarães Camargo Campos & Eder Alexandre Schatz Sá, 2020. "Hydrological Impacts of Climate Change in a Well-preserved Upland Watershed," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(8), pages 2255-2267, June.
    10. Kim, Ungtae & Kaluarachchi, Jagath J. & Smakhtin, Vladimir U., 2008. "Climate change impacts on hydrology and water resources of the Upper Blue Nile River Basin, Ethiopia," IWMI Research Reports 53025, International Water Management Institute.
    11. Sandra Mourato & Madalena Moreira & João Corte-Real, 2015. "Water Resources Impact Assessment Under Climate Change Scenarios in Mediterranean Watersheds," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2377-2391, May.
    12. Xianghu Li & Qi Zhang & Chong-Yu Xu & Xuchun Ye, 2015. "The changing patterns of floods in Poyang Lake, China: characteristics and explanations," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(1), pages 651-666, March.
    13. J. Doummar & M. Massoud & R. Khoury & M. Khawlie, 2009. "Optimal Water Resources Management: Case of Lower Litani River, Lebanon," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(11), pages 2343-2360, September.
    14. Swati Maurya & Prashant K. Srivastava & Lu Zhuo & Aradhana Yaduvanshi & R. K. Mall, 2023. "Future Climate Change Impact on the Streamflow of Mahi River Basin Under Different General Circulation Model Scenarios," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(6), pages 2675-2696, May.
    15. Heike Wanke & Armin Dünkeloh & Peter Udluft, 2008. "Groundwater Recharge Assessment for the Kalahari Catchment of North-eastern Namibia and North-western Botswana with a Regional-scale Water Balance Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(9), pages 1143-1158, September.
    16. Adlul Islam & Alok Sikka & B. Saha & Anamika Singh, 2012. "Streamflow Response to Climate Change in the Brahmani River Basin, India," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(6), pages 1409-1424, April.
    17. Wenying Zeng & Songbai Song & Yan Kang & Xuan Gao & Rui Ma, 2022. "Response of Runoff to Meteorological Factors Based on Time-Varying Parameter Vector Autoregressive Model with Stochastic Volatility in Arid and Semi-Arid Area of Weihe River Basin," Sustainability, MDPI, vol. 14(12), pages 1-12, June.
    18. Gianluigi Cisco & Andrea Gatto, 2021. "Climate Justice in an Intergenerational Sustainability Framework: A Stochastic OLG Model," Economies, MDPI, vol. 9(2), pages 1-13, April.
    19. Hu, Qiuli & Yang, Yonghui & Han, Shumin & Yang, Yanmin & Ai, Zhipin & Wang, Jiusheng & Ma, Fengyun, 2017. "Identifying changes in irrigation return flow with gradually intensified water-saving technology using HYDRUS for regional water resources management," Agricultural Water Management, Elsevier, vol. 194(C), pages 33-47.
    20. Huaijun Wang & Yaning Chen & Zhongshen Chen & Weihong Li, 2013. "Changes in annual and seasonal temperature extremes in the arid region of China, 1960–2010," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(3), pages 1913-1930, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:23:y:2018:i:1:d:10.1007_s11027-016-9727-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.