IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v21y2007i11p1899-1913.html
   My bibliography  Save this article

Prioritizing Structural Management by Quantifying the Effect of Land Use and Land Cover on Watershed Runoff and Sediment Yield

Author

Listed:
  • Ashok Mishra
  • S. Kar
  • V. Singh

Abstract

Hydrological processes in a mixed land use watershed are significantly influenced by land use (LU) and land cover (LC). In order to quantify the effect of LU/LC, topography, and morphology, runoff and sediment yield of a small multivegetated watershed in a sub-humid subtropical region in India were simulated by the Soil and Water Assessment Tool (SWAT) model and were compared with measured values. The mixed land use watershed displayed a synchronized runoff response to monsoon rains. Measured runoff and sediment yield varied one sub-watershed to another and ranged, respectively, from 256.33 to 367.83 mm and from 0.27 to 11.65 t/ha for 734.90 mm of rainfall in 2000 and from 310.36 to 393.49 mm and from 0.84 to 10.71 t/ha for 765.50 mm of rainfall in 2001. The correlation coefficient between rainfall and runoff was 0.86, that between runoff and sediment yield was 0.56, and that between rainfall and sediment yield was 0.55. The sub-watersheds with relatively high forest cover (SWS1 and SWS2) showed significantly less runoff and sediment yield (310.36 mm and 0.84 t/ha), whereas a sub-watershed with more area under cultivation produced higher runoff (393.5 mm) and higher sediment yield (11.65 t/ha). Measured and model simulated estimates of runoff and sediment yield from different sub-watersheds were employed to prioritize control measures in the watershed comprising areas under cultivation, waste, fallow and eroded land, and forest and bushes. The average estimates of sediment yield from different sub-watersheds were used to prioritize the checkdam construction as an effective measure to control sediment transport to downstream water resources. Copyright Springer Science+Business Media, Inc. 2007

Suggested Citation

  • Ashok Mishra & S. Kar & V. Singh, 2007. "Prioritizing Structural Management by Quantifying the Effect of Land Use and Land Cover on Watershed Runoff and Sediment Yield," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(11), pages 1899-1913, November.
  • Handle: RePEc:spr:waterr:v:21:y:2007:i:11:p:1899-1913
    DOI: 10.1007/s11269-006-9136-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-006-9136-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-006-9136-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kang, M.S. & Park, S.W. & Lee, J.J. & Yoo, K.H., 2006. "Applying SWAT for TMDL programs to a small watershed containing rice paddy fields," Agricultural Water Management, Elsevier, vol. 79(1), pages 72-92, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bekele Debele & R. Srinivasan & J-Yves Parlange, 2009. "Hourly Analyses of Hydrological and Water Quality Simulations Using the ESWAT Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(2), pages 303-324, January.
    2. Liangang Chen & Xin Qian & Yong Shi, 2011. "Critical Area Identification of Potential Soil Loss in a Typical Watershed of the Three Gorges Reservoir Region," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(13), pages 3445-3463, October.
    3. Pipas Kumar & Varun Joshi, 2019. "Modelling Surface Run-off Response Using Hydrological Model Swat in The Upper Watershed of River Subarnarekha, India," Earth Sciences Malaysia (ESMY), Zibeline International Publishing, vol. 3(2), pages 09-15, October.
    4. Singh, A. & Imtiyaz, M. & Isaac, R.K. & Denis, D.M., 2012. "Comparison of soil and water assessment tool (SWAT) and multilayer perceptron (MLP) artificial neural network for predicting sediment yield in the Nagwa agricultural watershed in Jharkhand, India," Agricultural Water Management, Elsevier, vol. 104(C), pages 113-120.
    5. Prakash Kaini & Kim Artita & John Nicklow, 2012. "Optimizing Structural Best Management Practices Using SWAT and Genetic Algorithm to Improve Water Quality Goals," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(7), pages 1827-1845, May.
    6. Saghafian, Bahram & Sima, Somayeh & Sadeghi, Sajjad & Jeirani, Farzin, 2012. "Application of unit response approach for spatial prioritization of runoff and sediment sources," Agricultural Water Management, Elsevier, vol. 109(C), pages 36-45.
    7. Santosh Thampi & Kolladi Raneesh & T. Surya, 2010. "Influence of Scale on SWAT Model Calibration for Streamflow in a River Basin in the Humid Tropics," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(15), pages 4567-4578, December.
    8. Wei Ouyang & Fanghua Hao & Kaiyu Song & Xuan Zhang, 2011. "Cascade Dam-Induced Hydrological Disturbance and Environmental Impact in the Upper Stream of the Yellow River," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(3), pages 913-927, February.
    9. Bakhtiar Osman Khzr & Gaylan Rasul Faqe Ibrahim & Ariean Ali Hamid & Shwan Ahmad Ail, 2022. "Runoff estimation using SCS-CN and GIS techniques in the Sulaymaniyah sub-basin of the Kurdistan region of Iraq," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 2640-2655, February.
    10. Mansour Talebizadeh & Saeid Morid & Seyyed Ayyoubzadeh & Mehdi Ghasemzadeh, 2010. "Uncertainty Analysis in Sediment Load Modeling Using ANN and SWAT Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(9), pages 1747-1761, July.
    11. Peipei Zhao & Mingan Shao & Tiejun Wang, 2010. "Spatial Distributions of Soil Surface-Layer Saturated Hydraulic Conductivity and Controlling Factors on Dam Farmlands," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 2247-2266, August.
    12. Everton Rocha & Maria Calijuri & Aníbal Santiago & Leonardo Assis & Luna Alves, 2012. "The Contribution of Conservation Practices in Reducing Runoff, Soil Loss, and Transport of Nutrients at the Watershed Level," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(13), pages 3831-3852, October.
    13. Xia Zhang & Guo Yu & Zhan Li & Peng Li, 2014. "Experimental Study on Slope Runoff, Erosion and Sediment under Different Vegetation Types," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(9), pages 2415-2433, July.
    14. Zahra Ebrahimi Gatgash & Seyed Hamidreza Sadeghi, 2023. "Prioritization-based management of the watershed using health assessment analysis at sub-watershed scale," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(9), pages 9673-9702, September.
    15. Halecki, Wiktor & Kruk, Edyta & Ryczek, Marek, 2018. "Loss of topsoil and soil erosion by water in agricultural areas: A multi-criteria approach for various land use scenarios in the Western Carpathians using a SWAT model," Land Use Policy, Elsevier, vol. 73(C), pages 363-372.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Coffey, R. & Cummins, E. & Bhreathnach, N. & Flaherty, V.O. & Cormican, M., 2010. "Development of a pathogen transport model for Irish catchments using SWAT," Agricultural Water Management, Elsevier, vol. 97(1), pages 101-111, January.
    2. Jeong, Hanseok & Kim, Hakkwan & Jang, Taeil & Park, Seungwoo, 2016. "Assessing the effects of indirect wastewater reuse on paddy irrigation in the Osan River watershed in Korea using the SWAT model," Agricultural Water Management, Elsevier, vol. 163(C), pages 393-402.
    3. Jihyeok Im & Donghyeon Woo & Dongsoo Kong, 2024. "Log-Linear Model and Delivery Load Analysis for Improvements in Water Quality through TMDL in the Gyeongan Stream Watershed, Republic of Korea," Sustainability, MDPI, vol. 16(11), pages 1-19, May.
    4. Jiandong Liu & Tao Pan & Deliang Chen & Xiuji Zhou & Qiang Yu & Gerald N. Flerchinger & De Li Liu & Xintong Zou & Hans W. Linderholm & Jun Du & Dingrong Wu & Yanbo Shen, 2017. "An Improved Ångström-Type Model for Estimating Solar Radiation over the Tibetan Plateau," Energies, MDPI, vol. 10(7), pages 1-28, July.
    5. Yang, Shengtian & Dong, Guotao & Zheng, Donghai & Xiao, Honglin & Gao, Yunfei & Lang, Yang, 2011. "Coupling Xinanjiang model and SWAT to simulate agricultural non-point source pollution in Songtao watershed of Hainan, China," Ecological Modelling, Elsevier, vol. 222(20), pages 3701-3717.
    6. Juan Huang & Yong Pang & Xiaoqiang Zhang & Yifan Tong, 2019. "Water Environmental Capacity Calculation and Allocation of the Taihu Lake Basin in Jiangsu Province Based on Control Unit," IJERPH, MDPI, vol. 16(19), pages 1-15, October.
    7. Lu, Jun & Gong, Dongqin & Shen, Yena & Liu, Mei & Chen, Dingjiang, 2013. "An inversed Bayesian modeling approach for estimating nitrogen export coefficients and uncertainty assessment in an agricultural watershed in eastern China," Agricultural Water Management, Elsevier, vol. 116(C), pages 79-88.
    8. Jung, Jae-Woon & Yoon, Kwang-Sik & Choi, Dong-Ho & Lim, Sang-Sun & Choi, Woo-Jung & Choi, Soo-Myung & Lim, Byung-Jin, 2012. "Water management practices and SCS curve numbers of paddy fields equipped with surface drainage pipes," Agricultural Water Management, Elsevier, vol. 110(C), pages 78-83.
    9. Huiyu Jin & Wanqi Chen & Zhenghong Zhao & Jiajia Wang & Weichun Ma, 2022. "New Framework for Dynamic Water Environmental Capacity Estimation Integrating the Hydro-Environmental Model and Load–Duration Curve Method—A Case Study in Data-Scarce Luanhe River Basin," IJERPH, MDPI, vol. 19(14), pages 1-23, July.
    10. Yan, Renhua & Gao, Junfeng & Huang, Jiacong, 2016. "WALRUS-paddy model for simulating the hydrological processes of lowland polders with paddy fields and pumping stations," Agricultural Water Management, Elsevier, vol. 169(C), pages 148-161.
    11. Dash, Sonam Sandeep & Sahoo, Bhabagrahi & Raghuwanshi, Narendra Singh, 2023. "SWAT model calibration approaches in an integrated paddy-dominated catchment-command," Agricultural Water Management, Elsevier, vol. 278(C).
    12. Liu, Wei & Fu, Qiang & Meng, Jun & Li, Tianxiao & Cheng, Kun, 2019. "Simulation and analysis of return flow at the field scale in the northern rice irrigation area of China," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    13. Cho, Jaepil & Park, Seungwoo & Im, Sangjun, 2008. "Evaluation of Agricultural Nonpoint Source (AGNPS) model for small watersheds in Korea applying irregular cell delineation," Agricultural Water Management, Elsevier, vol. 95(4), pages 400-408, April.
    14. Reshmidevi, T.V. & Jana, R. & Eldho, T.I., 2008. "Geospatial estimation of soil moisture in rain-fed paddy fields using SCS-CN-based model," Agricultural Water Management, Elsevier, vol. 95(4), pages 447-457, April.
    15. Wu, Di & Cui, Yuanlai & Wang, Yitong & Chen, Manyu & Luo, Yufeng & Zhang, Lei, 2019. "Reuse of return flows and its scale effect in irrigation systems based on modified SWAT model," Agricultural Water Management, Elsevier, vol. 213(C), pages 280-288.
    16. Sakaguchi, A. & Eguchi, S. & Kato, T. & Kasuya, M. & Ono, K. & Miyata, A. & Tase, N., 2014. "Development and evaluation of a paddy module for improving hydrological simulation in SWAT," Agricultural Water Management, Elsevier, vol. 137(C), pages 116-122.
    17. Minji Park & Yongchul Cho & Kyungyong Shin & Hyungjin Shin & Sanghun Kim & Soonju Yu, 2021. "Analysis of Water Quality Characteristics in Unit Watersheds in the Hangang Basin with Respect to TMDL Implementation," Sustainability, MDPI, vol. 13(18), pages 1-14, September.
    18. Xie, Hua & You, Liangzhi & Wielgosz, Benjamin & Ringler, Claudia, 2014. "Estimating the potential for expanding smallholder irrigation in Sub-Saharan Africa," Agricultural Water Management, Elsevier, vol. 131(C), pages 183-193.
    19. Kim, Jihye & Kim, Hakkwan & Kim, Sinae & Jang, Taeil & Jun, Sang-Min & Hwang, Soonho & Song, Jung-Hun & Kang, Moon-Seong, 2022. "Development of a simulation method for paddy fields based on surface FTABLE of hydrological simulation program–FORTRAN," Agricultural Water Management, Elsevier, vol. 271(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:21:y:2007:i:11:p:1899-1913. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.