IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v24y2022i2d10.1007_s10668-021-01549-z.html
   My bibliography  Save this article

Runoff estimation using SCS-CN and GIS techniques in the Sulaymaniyah sub-basin of the Kurdistan region of Iraq

Author

Listed:
  • Bakhtiar Osman Khzr

    (University of Raparin)

  • Gaylan Rasul Faqe Ibrahim

    (Soran University
    University of Halabja)

  • Ariean Ali Hamid

    (University of Halabja)

  • Shwan Ahmad Ail

    (Soran University)

Abstract

The need for conserving water rises as the resource becomes scarcer. The most essential step in order to manage this resource is to estimate watershed runoff. Runoff and rainfall are the main two sources that maintain ground water and recharge it. Hydrologists in the Kurdistan Region face the challenge of unavailability of data (most watersheds in the area are ungauged) or inaccurate data. The surface runoff of the study area was simulated via soil conservation service-curve number (SCS-CN) technique integrated into geographical information system (GIS). Surface runoff and curve number maps were made using the GIS created and processed data from land use/land cover (LU/LC), daily rainfall, hydrologic soil group and slope thematic maps. The results showed that the urbanization of the Sulaymaniyah watershed has increased the impermeability of the land by 40.9% for the period from 1999 to 2019. The runoff depth was 40.2% higher in 2019 as compared to 1999 due to the increase of the impermeable surface area. Research has also revealed a growth in built-up areas with a decrease of coverage in vegetation, resulting in a greater depth of surface runoff in urban catchment areas.

Suggested Citation

  • Bakhtiar Osman Khzr & Gaylan Rasul Faqe Ibrahim & Ariean Ali Hamid & Shwan Ahmad Ail, 2022. "Runoff estimation using SCS-CN and GIS techniques in the Sulaymaniyah sub-basin of the Kurdistan region of Iraq," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 2640-2655, February.
  • Handle: RePEc:spr:endesu:v:24:y:2022:i:2:d:10.1007_s10668-021-01549-z
    DOI: 10.1007/s10668-021-01549-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-021-01549-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-021-01549-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shiqiang Du & Anton Van Rompaey & Peijun Shi & Jing’ai Wang, 2015. "A dual effect of urban expansion on flood risk in the Pearl River Delta (China) revealed by land-use scenarios and direct runoff simulation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(1), pages 111-128, May.
    2. Ashok Mishra & S. Kar & V. Singh, 2007. "Prioritizing Structural Management by Quantifying the Effect of Land Use and Land Cover on Watershed Runoff and Sediment Yield," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(11), pages 1899-1913, November.
    3. Shanshan Hu & Yunyun Fan & Tao Zhang, 2020. "Assessing the Effect of Land Use Change on Surface Runoff in a Rapidly Urbanized City: A Case Study of the Central Area of Beijing," Land, MDPI, vol. 9(1), pages 1-15, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhiwei Wan & Hongqi Wu, 2022. "Evolution of Ecological Patterns of Poyang Lake Wetland Landscape over the Last One Hundred Years Based on Historical Topographic Maps and Landsat Images," Sustainability, MDPI, vol. 14(13), pages 1-17, June.
    2. Anna Porębska & Krzysztof Muszyński & Izabela Godyń & Kinga Racoń-Leja, 2023. "City and Water Risk: Accumulated Runoff Mapping Analysis as a Tool for Sustainable Land Use Planning," Land, MDPI, vol. 12(7), pages 1-21, July.
    3. Samith Madusanka & Chethika Abenayake & Amila Jayasinghe & Chaminda Perera, 2022. "A Decision-Making Tool for Urban Planners: A Framework to Model the Interdependency among Land Use, Accessibility, Density, and Surface Runoff in Urban Areas," Sustainability, MDPI, vol. 14(1), pages 1-19, January.
    4. Taşkın, Halime Firdevs & Manioğlu, Gülten, 2024. "Evaluation of the impact of land use ratios and cover materials in settlement design on stormwater runoff," Land Use Policy, Elsevier, vol. 146(C).
    5. Zahra Ebrahimi Gatgash & Seyed Hamidreza Sadeghi, 2023. "Prioritization-based management of the watershed using health assessment analysis at sub-watershed scale," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(9), pages 9673-9702, September.
    6. Zhiwei Wan & Xi Chen & Min Ju & Chaohao Ling & Guangxu Liu & Siping Lin & Huihua Liu & Yulian Jia & Meixin Jiang & Fuqiang Liao, 2020. "Streamflow Reconstruction and Variation Characteristic Analysis of the Ganjiang River in China for the Past 515 Years," Sustainability, MDPI, vol. 12(3), pages 1-20, February.
    7. Mansour Talebizadeh & Saeid Morid & Seyyed Ayyoubzadeh & Mehdi Ghasemzadeh, 2010. "Uncertainty Analysis in Sediment Load Modeling Using ANN and SWAT Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(9), pages 1747-1761, July.
    8. Tao Tao & Du Wang & Ganping Huang & Liqing Lin & Chenhao Wu & Qixin Xu & Jun Zhao & Guangren Qian, 2023. "Assessing the Long-Term Hydrological Effects of Rapid Urbanization in Metropolitan Shanghai, China: The Finer the Landscape Classification, the More Accurate the Modeling?," Sustainability, MDPI, vol. 15(8), pages 1-14, April.
    9. Sabita Shrestha & Shenghui Cui & Lilai Xu & Lihong Wang & Bikram Manandhar & Shengping Ding, 2021. "Impact of Land Use Change Due to Urbanisation on Surface Runoff Using GIS-Based SCS–CN Method: A Case Study of Xiamen City, China," Land, MDPI, vol. 10(8), pages 1-18, August.
    10. Mariusz Starzec & Józef Dziopak & Daniel Słyś, 2020. "An Analysis of Stormwater Management Variants in Urban Catchments," Resources, MDPI, vol. 9(2), pages 1-17, February.
    11. Shanshan Hu & Yunyun Fan & Tao Zhang, 2020. "Assessing the Effect of Land Use Change on Surface Runoff in a Rapidly Urbanized City: A Case Study of the Central Area of Beijing," Land, MDPI, vol. 9(1), pages 1-15, January.
    12. Prakash Kaini & Kim Artita & John Nicklow, 2012. "Optimizing Structural Best Management Practices Using SWAT and Genetic Algorithm to Improve Water Quality Goals," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(7), pages 1827-1845, May.
    13. Bekele Debele & R. Srinivasan & J-Yves Parlange, 2009. "Hourly Analyses of Hydrological and Water Quality Simulations Using the ESWAT Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(2), pages 303-324, January.
    14. Ewelina Janicka & Jolanta Kanclerz & Tropikë Agaj & Katarzyna Gizińska, 2023. "Comparison of Two Hydrological Models, the HEC-HMS and Nash Models, for Runoff Estimation in Michałówka River," Sustainability, MDPI, vol. 15(10), pages 1-15, May.
    15. Qingyao Huang & Yihua Liu, 2021. "The Coupling between Urban Expansion and Population Growth: An Analysis of Urban Agglomerations in China (2005–2020)," Sustainability, MDPI, vol. 13(13), pages 1-18, June.
    16. Stephen J. Birkinshaw & Vladimir Krivtsov, 2022. "Evaluating the Effect of the Location and Design of Retention Ponds on Flooding in a Peri-Urban River Catchment," Land, MDPI, vol. 11(8), pages 1-17, August.
    17. Singh, A. & Imtiyaz, M. & Isaac, R.K. & Denis, D.M., 2012. "Comparison of soil and water assessment tool (SWAT) and multilayer perceptron (MLP) artificial neural network for predicting sediment yield in the Nagwa agricultural watershed in Jharkhand, India," Agricultural Water Management, Elsevier, vol. 104(C), pages 113-120.
    18. Meng, Liting & Sun, Yan & Zhao, Shuqing, 2020. "Comparing the spatial and temporal dynamics of urban expansion in Guangzhou and Shenzhen from 1975 to 2015: A case study of pioneer cities in China’s rapid urbanization," Land Use Policy, Elsevier, vol. 97(C).
    19. Saghafian, Bahram & Sima, Somayeh & Sadeghi, Sajjad & Jeirani, Farzin, 2012. "Application of unit response approach for spatial prioritization of runoff and sediment sources," Agricultural Water Management, Elsevier, vol. 109(C), pages 36-45.
    20. Chunlin Li & Miao Liu & Yuanman Hu & Tuo Shi & Min Zong & M. Todd Walter, 2018. "Assessing the Impact of Urbanization on Direct Runoff Using Improved Composite CN Method in a Large Urban Area," IJERPH, MDPI, vol. 15(4), pages 1-14, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:24:y:2022:i:2:d:10.1007_s10668-021-01549-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.