IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v213y2019icp280-288.html
   My bibliography  Save this article

Reuse of return flows and its scale effect in irrigation systems based on modified SWAT model

Author

Listed:
  • Wu, Di
  • Cui, Yuanlai
  • Wang, Yitong
  • Chen, Manyu
  • Luo, Yufeng
  • Zhang, Lei

Abstract

Return flows in irrigation systems are often reused contributing to overall efficiency. To investigate the fate of return flows and the scale effects of reuses, the SWAT (Soil and Water Assessment Tool) model was modified to better represent the characteristics of paddy rice irrigation systems, which includes a simulation module for automatic multi-source irrigation (AMSIM). The modified SWAT model was used to simulate the hydrological processes in the Yangshudang (YSD) watershed of the Zhanghe Irrigation System (ZIS) in China. Furthermore, we proposed a method to calculate the amounts of return flows and the reused amount based on the output of the model. The sub-basins nesting method was used to divide the study area into six scales. We calculated the rainfall & irrigation water reuse rates (ηI+P) and the irrigation water reuse rates (ηI) at different scales and analyzed the changes of these two indicators over different scales. The results revealed that the modified SWAT model succeeded in simulating hydrological processes in a paddy rice irrigation system. ηI+P and ηI increased with the increase of scale. ηI+P was higher in the wet years and lower in the dry years, while ηI was higher in the dry years and lower in the wet years. The reason for increase of ηI+P and ηI as the scales increases were due to the fact that the return flows was repeatedly intercepted by downstream paddy fields, farm ponds, and drainage channels at larger scales, This reuse rates however reach the upper limit at a scale of 3500 ha, after which ηI+P and ηI no longer increase.

Suggested Citation

  • Wu, Di & Cui, Yuanlai & Wang, Yitong & Chen, Manyu & Luo, Yufeng & Zhang, Lei, 2019. "Reuse of return flows and its scale effect in irrigation systems based on modified SWAT model," Agricultural Water Management, Elsevier, vol. 213(C), pages 280-288.
  • Handle: RePEc:eee:agiwat:v:213:y:2019:i:c:p:280-288
    DOI: 10.1016/j.agwat.2018.10.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418302932
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2018.10.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Poch-Massegú, R. & Jiménez-Martínez, J. & Wallis, K.J. & Ramírez de Cartagena, F. & Candela, L., 2014. "Irrigation return flow and nitrate leaching under different crops and irrigation methods in Western Mediterranean weather conditions," Agricultural Water Management, Elsevier, vol. 134(C), pages 1-13.
    2. Dai, Junfeng & Cui, Yuanlai & Cai, Xueliang & Brown, Larry C. & Shang, Yuhui, 2016. "Influence of water management on the water cycle in a small watershed irrigation system based on a distributed hydrologic model," Agricultural Water Management, Elsevier, vol. 174(C), pages 52-60.
    3. Zulu, Giveson & Toyota, Masaru & Misawa, Shin-ichi, 1996. "Characteristics of water reuse and its effects on paddy irrigation system water balance and the riceland ecosystem," Agricultural Water Management, Elsevier, vol. 31(3), pages 269-283, October.
    4. Sakaguchi, A. & Eguchi, S. & Kato, T. & Kasuya, M. & Ono, K. & Miyata, A. & Tase, N., 2014. "Development and evaluation of a paddy module for improving hydrological simulation in SWAT," Agricultural Water Management, Elsevier, vol. 137(C), pages 116-122.
    5. Keller, A. A., 1995. "Effective efficiency: a water use efficiency concept for allocating freshwater resources," IWMI Working Papers H044344, International Water Management Institute.
    6. Keller, A. A., 1995. "Effective efficiency: a water use efficiency concept for allocating freshwater resources," IWMI Working Papers H043180, International Water Management Institute.
    7. Droogers, P. & Kite, G., 2001. "Estimating productivity of water at different spatial scales using simulation modeling," IWMI Research Reports H028144, International Water Management Institute.
    8. Kang, Mingoo & Park, Seungwoo, 2014. "Modeling water flows in a serial irrigation reservoir system considering irrigation return flows and reservoir operations," Agricultural Water Management, Elsevier, vol. 143(C), pages 131-141.
    9. Kang, M.S. & Park, S.W. & Lee, J.J. & Yoo, K.H., 2006. "Applying SWAT for TMDL programs to a small watershed containing rice paddy fields," Agricultural Water Management, Elsevier, vol. 79(1), pages 72-92, January.
    10. Mohan, S. & Vijayalakshmi, D.P., 2009. "Prediction of irrigation return flows through a hierarchical modeling approach," Agricultural Water Management, Elsevier, vol. 96(2), pages 233-246, February.
    11. Perry, C. J., 1999. "The IWMI water resources paradigm - definitions and implications," Agricultural Water Management, Elsevier, vol. 40(1), pages 45-50, March.
    12. Droogers, Peter & Kite, Geoff, 2001. "Estimating productivity of water at different spatial scales using simulation modeling," IWMI Research Reports 44568, International Water Management Institute.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Yajie & Ma, Yibing & Zhang, Shiwen & Li, Zhen & Huang, Yuanfang, 2021. "Optimum allocation of salt discharge areas in land consolidation for irrigation districts by SahysMod," Agricultural Water Management, Elsevier, vol. 256(C).
    2. Wu, Di & Cui, Yuanlai & Li, Dacheng & Chen, Manyu & Ye, Xugang & Fan, Guofu & Gong, Lanqiang, 2021. "Calculation framework for agricultural irrigation water consumption in multi-source irrigation systems," Agricultural Water Management, Elsevier, vol. 244(C).
    3. Wu, Di & Cui, Yuanlai & Luo, Yufeng, 2019. "Irrigation efficiency and water-saving potential considering reuse of return flow," Agricultural Water Management, Elsevier, vol. 221(C), pages 519-527.
    4. Wen, Yeqiang & Shang, Songhao & Rahman, Khalil Ur & Xia, Yuhong & Ren, Dongyang, 2020. "A semi-distributed drainage model for monthly drainage water and salinity simulation in a large irrigation district in arid region," Agricultural Water Management, Elsevier, vol. 230(C).
    5. Liu, Wei & Fu, Qiang & Meng, Jun & Li, Tianxiao & Cheng, Kun, 2019. "Simulation and analysis of return flow at the field scale in the northern rice irrigation area of China," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    6. Feng, Genxiang & Zhu, Chengli & Wu, Qingfeng & Wang, Ce & Zhang, Zhanyu & Mwiya, Richwell Mubita & Zhang, Li, 2021. "Evaluating the impacts of saline water irrigation on soil water-salt and summer maize yield in subsurface drainage condition using coupled HYDRUS and EPIC model," Agricultural Water Management, Elsevier, vol. 258(C).
    7. Chen, Yong & Marek, Gary W. & Marek, Thomas H. & Porter, Dana O. & Brauer, David K. & Srinivasan, Raghavan, 2021. "Simulating the effects of agricultural production practices on water conservation and crop yields using an improved SWAT model in the Texas High Plains, USA," Agricultural Water Management, Elsevier, vol. 244(C).
    8. Jie, Feilong & Fei, Liangjun & Li, Shan & Hao, Kun & Liu, Lihua & Zhu, Hongyan, 2021. "Prediction model for irrigation return flow considering lag effect for arid areas," Agricultural Water Management, Elsevier, vol. 256(C).
    9. Simons, G.W.H. & Bastiaanssen, W.G.M. & Cheema, M.J.M. & Ahmad, B. & Immerzeel, W.W., 2020. "A novel method to quantify consumed fractions and non-consumptive use of irrigation water: Application to the Indus Basin Irrigation System of Pakistan," Agricultural Water Management, Elsevier, vol. 236(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Di & Cui, Yuanlai & Luo, Yufeng, 2019. "Irrigation efficiency and water-saving potential considering reuse of return flow," Agricultural Water Management, Elsevier, vol. 221(C), pages 519-527.
    2. Ghahroodi, E. Mokari & Noory, H. & Liaghat, A.M., 2015. "Performance evaluation study and hydrologic and productive analysis of irrigation systems at the Qazvin irrigation network (Iran)," Agricultural Water Management, Elsevier, vol. 148(C), pages 189-195.
    3. Barker, Randolph & Dawe, D. & Inocencio, A., 2003. "Economics of water productivity in managing water for agriculture," Book Chapters,, International Water Management Institute.
    4. Lankford, Bruce, 2012. "Fictions, fractions, factorials and fractures; on the framing of irrigation efficiency," Agricultural Water Management, Elsevier, vol. 108(C), pages 27-38.
    5. Wen, Yeqiang & Shang, Songhao & Rahman, Khalil Ur & Xia, Yuhong & Ren, Dongyang, 2020. "A semi-distributed drainage model for monthly drainage water and salinity simulation in a large irrigation district in arid region," Agricultural Water Management, Elsevier, vol. 230(C).
    6. Barros, R. & Isidoro, D. & Aragüés, R., 2011. "Long-term water balances in La Violada Irrigation District (Spain): II. Analysis of irrigation performance," Agricultural Water Management, Elsevier, vol. 98(10), pages 1569-1576, August.
    7. Kazem Attar, Hasti & Noory, Hamideh & Ebrahimian, Hamed & Liaghat, Abdol-Majid, 2020. "Efficiency and productivity of irrigation water based on water balance considering quality of return flows," Agricultural Water Management, Elsevier, vol. 231(C).
    8. Huang, Feng & Li, Baoguo, 2010. "Assessing grain crop water productivity of China using a hydro-model-coupled-statistics approach: Part I: Method development and validation," Agricultural Water Management, Elsevier, vol. 97(7), pages 1077-1092, July.
    9. Wu, Di & Cui, Yuanlai & Li, Dacheng & Chen, Manyu & Ye, Xugang & Fan, Guofu & Gong, Lanqiang, 2021. "Calculation framework for agricultural irrigation water consumption in multi-source irrigation systems," Agricultural Water Management, Elsevier, vol. 244(C).
    10. Raeisi, Leila Goli & Morid, Saeed & Delavar, Majid & Srinivasan, Raghavan, 2019. "Effect and side-effect assessment of different agricultural water saving measures in an integrated framework," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    11. Immerzeel, W.W. & Gaur, A. & Zwart, S.J., 2008. "Integrating remote sensing and a process-based hydrological model to evaluate water use and productivity in a south Indian catchment," Agricultural Water Management, Elsevier, vol. 95(1), pages 11-24, January.
    12. Dugan, Patrick & Dey, Madan M. & Sugunan, V.V., 2006. "Fisheries and water productivity in tropical river basins: Enhancing food security and livelihoods by managing water for fish," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 262-275, February.
    13. Scheierling, Susanne M. & Treguer, David O. & Booker, James F. & Decker, Elisabeth, 2014. "How to assess agricultural water productivity ? looking for water in the agricultural productivity and efficiency literature," Policy Research Working Paper Series 6982, The World Bank.
    14. El-Shafie, A.F. & Osama, M.A. & Hussein, M.M. & El-Gindy, A.M. & Ragab, R., 2017. "Predicting soil moisture distribution, dry matter, water productivity and potato yield under a modified ‎gated pipe irrigation system: SALTMED model application using field experimental data," Agricultural Water Management, Elsevier, vol. 184(C), pages 221-233.
    15. M. Dinesh Kumar, 2018. "Proposing a solution to India’s water crisis: ‘paradigm shift’ or pushing outdated concepts?," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 34(1), pages 42-50, January.
    16. van Halsema, Gerardo E. & Vincent, Linden, 2012. "Efficiency and productivity terms for water management: A matter of contextual relativism versus general absolutism," Agricultural Water Management, Elsevier, vol. 108(C), pages 9-15.
    17. Kijne, Jacob W., 2003. "Water productivity under saline conditions," Book Chapters,, International Water Management Institute.
    18. Jeanne PERRIER, 2019. "Les lois palestiniennes de l’eau : entre centralisation, décentralisation et mise en invisibilité," Working Paper f2757814-3bd9-4fc1-970d-2, Agence française de développement.
    19. Osman, Rehab & Ferrari, Emanuele & McDonald, Scott, 2015. "Water Quality Assessment SAM/CGE and Satellite Accounts Integrated Framework-Egypt," 89th Annual Conference, April 13-15, 2015, Warwick University, Coventry, UK 204292, Agricultural Economics Society.
    20. Molden, David & Oweis, T. Y. & Pasquale, S. & Kijne, Jacob W. & Hanjra, M. A. & Bindraban, P. S. & Bouman, Bas A. M. & Cook, S. & Erenstein, O. & Farahani, H. & Hachum, A. & Hoogeveen, J. & Mahoo, Hen, 2007. "Pathways for increasing agricultural water productivity," Book Chapters,, International Water Management Institute.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:213:y:2019:i:c:p:280-288. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.