IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v95y2008i4p447-457.html
   My bibliography  Save this article

Geospatial estimation of soil moisture in rain-fed paddy fields using SCS-CN-based model

Author

Listed:
  • Reshmidevi, T.V.
  • Jana, R.
  • Eldho, T.I.

Abstract

Paddy fields are characterized by standing water and saturation condition during the entire crop growth period. However, in sub-humid and semi-arid areas, scarce rainfall and intermittent dry spells often cause soil moisture depletion resulting in unsaturated condition in the fields. These distinctive characteristics of the paddy fields have significant influence on the runoff generation and soil moisture retention characteristics of the watershed. In this study, the objective is to extend the application of the Soil Conservation Services Curve Number (SCS-CN)-based models for the geospatial and temporal simulation of soil moisture to paddy field-dominated agricultural watersheds in the water scarce areas. Different SCS-CN-based models, integrated with the soil moisture balance equation, are used to estimate the surface runoff and soil moisture content wherein, the spatial variation in the soil hydraulic characteristics is used to calculate the geospatial variation in soil moisture content. Physical significance of the terms initial abstraction (Ia) and potential maximum retention (S) in these models and their influence on the estimation of runoff and soil moisture are analysed in detail. A new SCS-CN-based model for soil moisture simulation (SCS-CN-SMS), to improve the soil moisture estimation, is proposed in this paper. The proposed model is built up on the soil moisture balance equation to account for the effect of ponding condition and soil moisture variation between the dry and saturation condition. The method is tested with 3 years observed surface runoff data and crop production statistics from a part of the Gandeshwari sub-watershed in West Bengal, India. The entire study area is divided into cells of 20 m × 20 m. Various components of the soil moisture balance equation are estimated for each cell as a function of the soil moisture content. Remote Sensing Technique and Geographic Information System (GIS) are used to extract and integrate the spatially distributed land use and soil characteristics. The Hortonion overland flow concept adopted in the SCS-CN method is used to estimate the soil hydraulic characteristics of each cell in which the curve number is used to infer the spatial variation of the land use and soil characteristics. Even though the original SCS-CN method and the existing modified versions are efficient for runoff estimation, these models are found to be inappropriate for the estimation of soil moisture distribution. On the other hand, the proposed SCS-CN-SMS model gives better results for both runoff and soil moisture simulation and is, therefore, more suitable for the hydrological modeling of paddy field-dominated agricultural watersheds.

Suggested Citation

  • Reshmidevi, T.V. & Jana, R. & Eldho, T.I., 2008. "Geospatial estimation of soil moisture in rain-fed paddy fields using SCS-CN-based model," Agricultural Water Management, Elsevier, vol. 95(4), pages 447-457, April.
  • Handle: RePEc:eee:agiwat:v:95:y:2008:i:4:p:447-457
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(07)00291-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Panigrahi, B. & Panda, S. N. & Mull, R., 2001. "Simulation of water harvesting potential in rainfed ricelands using water balance model," Agricultural Systems, Elsevier, vol. 69(3), pages 165-182, September.
    2. Kang, M.S. & Park, S.W. & Lee, J.J. & Yoo, K.H., 2006. "Applying SWAT for TMDL programs to a small watershed containing rice paddy fields," Agricultural Water Management, Elsevier, vol. 79(1), pages 72-92, January.
    3. S. K. Mishra & M. K. Jain & V. P. Singh, 2004. "Evaluation of the SCS-CN-Based Model Incorporating Antecedent Moisture," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 18(6), pages 567-589, December.
    4. Banik, Pabitra & Edmonds, Christopher & Fuwa, Nobuhiko & Kam, Suan Pheng & Villano, Lorena & Bagchi, D.K., 2004. "Natural Resource Endowments, Subsistence Agriculture, and Poverty in the Chhotanagpur Plateau," MPRA Paper 23692, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hamideh Noory & Mona Deyhool & Farhad Mirzaei, 2019. "A Simulation-Optimization Model for Conjunctive Use of Canal and Pond in Irrigating Paddy Fields," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(3), pages 1053-1068, February.
    2. Kim, H.K. & Jang, T.I. & Im, S.J. & Park, S.W., 2009. "Estimation of irrigation return flow from paddy fields considering the soil moisture," Agricultural Water Management, Elsevier, vol. 96(5), pages 875-882, May.
    3. Jung, Jae-Woon & Yoon, Kwang-Sik & Choi, Dong-Ho & Lim, Sang-Sun & Choi, Woo-Jung & Choi, Soo-Myung & Lim, Byung-Jin, 2012. "Water management practices and SCS curve numbers of paddy fields equipped with surface drainage pipes," Agricultural Water Management, Elsevier, vol. 110(C), pages 78-83.
    4. Reshmidevi, T.V. & Eldho, T.I. & Jana, R., 2009. "A GIS-integrated fuzzy rule-based inference system for land suitability evaluation in agricultural watersheds," Agricultural Systems, Elsevier, vol. 101(1-2), pages 101-109, June.
    5. Shen, Z.Y. & Gong, Y.W. & Li, Y.H. & Hong, Q. & Xu, L. & Liu, R.M., 2009. "A comparison of WEPP and SWAT for modeling soil erosion of the Zhangjiachong Watershed in the Three Gorges Reservoir Area," Agricultural Water Management, Elsevier, vol. 96(10), pages 1435-1442, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jung, Jae-Woon & Yoon, Kwang-Sik & Choi, Dong-Ho & Lim, Sang-Sun & Choi, Woo-Jung & Choi, Soo-Myung & Lim, Byung-Jin, 2012. "Water management practices and SCS curve numbers of paddy fields equipped with surface drainage pipes," Agricultural Water Management, Elsevier, vol. 110(C), pages 78-83.
    2. Lu Zhuo & Dawei Han & Qiang Dai & Tanvir Islam & Prashant Srivastava, 2015. "Appraisal of NLDAS-2 Multi-Model Simulated Soil Moistures for Hydrological Modelling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3503-3517, August.
    3. Jeong, Hanseok & Kim, Hakkwan & Jang, Taeil & Park, Seungwoo, 2016. "Assessing the effects of indirect wastewater reuse on paddy irrigation in the Osan River watershed in Korea using the SWAT model," Agricultural Water Management, Elsevier, vol. 163(C), pages 393-402.
    4. Solmaz Fathololoumi & Ali Reza Vaezi & Seyed Kazem Alavipanah & Ardavan Ghorbani & Mohammad Karimi Firozjaei & Asim Biswas, 2023. "Improving Runoff Prediction Accuracy in a Mountainous Watershed Using a Remote Sensing-Based Approach," Sustainability, MDPI, vol. 15(17), pages 1-18, August.
    5. Muhammad Ajmal & Jae-Hyun Ahn & Tae-Woong Kim, 2016. "Excess Stormwater Quantification in Ungauged Watersheds Using an Event-Based Modified NRCS Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1433-1448, March.
    6. Pramod Pandey & Pieter Zaag & Michelle Soupir & Vijay Singh, 2013. "A New Model for Simulating Supplemental Irrigation and the Hydro-Economic Potential of a Rainwater Harvesting System in Humid Subtropical Climates," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 3145-3164, June.
    7. Yang, Shengtian & Dong, Guotao & Zheng, Donghai & Xiao, Honglin & Gao, Yunfei & Lang, Yang, 2011. "Coupling Xinanjiang model and SWAT to simulate agricultural non-point source pollution in Songtao watershed of Hainan, China," Ecological Modelling, Elsevier, vol. 222(20), pages 3701-3717.
    8. Juan Huang & Yong Pang & Xiaoqiang Zhang & Yifan Tong, 2019. "Water Environmental Capacity Calculation and Allocation of the Taihu Lake Basin in Jiangsu Province Based on Control Unit," IJERPH, MDPI, vol. 16(19), pages 1-15, October.
    9. Dash, Sonam Sandeep & Sahoo, Bhabagrahi & Raghuwanshi, Narendra Singh, 2023. "SWAT model calibration approaches in an integrated paddy-dominated catchment-command," Agricultural Water Management, Elsevier, vol. 278(C).
    10. Wu, Di & Cui, Yuanlai & Wang, Yitong & Chen, Manyu & Luo, Yufeng & Zhang, Lei, 2019. "Reuse of return flows and its scale effect in irrigation systems based on modified SWAT model," Agricultural Water Management, Elsevier, vol. 213(C), pages 280-288.
    11. Kar, Gouranga & Verma, H.N. & Singh, Ravender, 2006. "Effects of winter crop and supplemental irrigation on crop yield, water use efficiency and profitability in rainfed rice based cropping system of eastern India," Agricultural Water Management, Elsevier, vol. 79(3), pages 280-292, February.
    12. Sakaguchi, A. & Eguchi, S. & Kato, T. & Kasuya, M. & Ono, K. & Miyata, A. & Tase, N., 2014. "Development and evaluation of a paddy module for improving hydrological simulation in SWAT," Agricultural Water Management, Elsevier, vol. 137(C), pages 116-122.
    13. Minji Park & Yongchul Cho & Kyungyong Shin & Hyungjin Shin & Sanghun Kim & Soonju Yu, 2021. "Analysis of Water Quality Characteristics in Unit Watersheds in the Hangang Basin with Respect to TMDL Implementation," Sustainability, MDPI, vol. 13(18), pages 1-14, September.
    14. Konstantinos Soulis & John Valiantzas, 2013. "Identification of the SCS-CN Parameter Spatial Distribution Using Rainfall-Runoff Data in Heterogeneous Watersheds," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(6), pages 1737-1749, April.
    15. Pramod Pandey & Michelle Soupir & Vijay Singh & Sudhindra Panda & Vinay Pandey, 2011. "Modeling Rainwater Storage in Distributed Reservoir Systems in Humid Subtropical and Tropical Savannah Regions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(13), pages 3091-3111, October.
    16. Yoichi Fujihara & Masato Oda & Naoki Horikawa & Chikara Ogura, 2011. "Hydrologic Analysis of Rainfed Rice Areas Using a Simple Semi-distributed Water Balance Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(9), pages 2061-2080, July.
    17. Coffey, R. & Cummins, E. & Bhreathnach, N. & Flaherty, V.O. & Cormican, M., 2010. "Development of a pathogen transport model for Irish catchments using SWAT," Agricultural Water Management, Elsevier, vol. 97(1), pages 101-111, January.
    18. Ashok Mishra & S. Kar & V. Singh, 2007. "Prioritizing Structural Management by Quantifying the Effect of Land Use and Land Cover on Watershed Runoff and Sediment Yield," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(11), pages 1899-1913, November.
    19. Nobuhiko Fuwa & Christopher Edmonds & Pabitra Banik, 2007. "Are small‐scale rice farmers in eastern India really inefficient? Examining the effects of microtopography on technical efficiency estimates," Agricultural Economics, International Association of Agricultural Economists, vol. 36(3), pages 335-346, May.
    20. Vijay P. Santikari & Lawrence C. Murdoch, 2019. "Accounting for Spatiotemporal Variations of Curve Number Using Variable Initial Abstraction and Antecedent Moisture," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(2), pages 641-656, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:95:y:2008:i:4:p:447-457. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.