IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v20y2006i6p899-915.html
   My bibliography  Save this article

Large-Scale Assessment of Drought Variability Based on NCEP/NCAR and ERA-40 Re-Analyses

Author

Listed:
  • Isabella Bordi
  • Klaus Fraedrich
  • Marcello Petitta
  • Alfonso Sutera

Abstract

The impacts of different spatial resolutions and different data assimilation schemes of the available re-analysis data sets (NCEP/NCAR and ERA-40) on the assessment of drought variability are analysed. Particular attention has been devoted to the analysis of the possible existence of a linear trend in the climatic signal. The long-term aspects of drought over the globe during the last forty years have been evaluated by computing the Standardized Precipitation Index (SPI) on 24-month time scale. The SPI, in fact, seems to be a useful tool for monitoring dry and wet periods on multiple time scales and comparing climatic conditions of areas governed by different hydrological regimes. To unveil possible discrepancies between the analyses carried out with the two data sets, we studied the leading space-time variability of drought by applying the principal component analysis (PCA) to the SPI time series. Results suggest that on the global scale, the two re-analyses agree in their first principal component score, but not in the associated loading: both re-analyses capture a linear trend, though the areas where this feature should be most likely observed are not uniquely identified by the two data sets. Moreover, while the ERA-40 unveils the presence of a weak net “global” trend towards wet conditions, the NCEP/NCAR re-analysis suggests that the areas in the world characterised by positive/negative trends balance to zero. At large regional scale, a good agreement of the results with those obtained from the observations are found for the United Stated, while for the European sector the two re-analyses show remarkable differences both in the first loading and in representing the timing of the wet and dry periods. Also for these areas a linear trend, superposed on other short-term fluctuations, is detectable in the first principal component of the SPI field. Copyright Springer Science+Business Media, Inc. 2006

Suggested Citation

  • Isabella Bordi & Klaus Fraedrich & Marcello Petitta & Alfonso Sutera, 2006. "Large-Scale Assessment of Drought Variability Based on NCEP/NCAR and ERA-40 Re-Analyses," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 20(6), pages 899-915, December.
  • Handle: RePEc:spr:waterr:v:20:y:2006:i:6:p:899-915
    DOI: 10.1007/s11269-005-9013-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-005-9013-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-005-9013-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. B. Bonaccorso & I. Bordi & A. Cancelliere & G. Rossi & A. Sutera, 2003. "Spatial Variability of Drought: An Analysis of the SPI in Sicily," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 17(4), pages 273-296, August.
    2. Isabella Bordi & Alfonso Sutera, 2001. "Fifty Years of Precipitation: Some Spatially Remote Teleconnnections," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 15(4), pages 247-280, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tayeb Raziei & Bahram Saghafian & Ana Paulo & Luis Pereira & Isabella Bordi, 2009. "Spatial Patterns and Temporal Variability of Drought in Western Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(3), pages 439-455, February.
    2. G. Buttafuoco & T. Caloiero & R. Coscarelli, 2015. "Analyses of Drought Events in Calabria (Southern Italy) Using Standardized Precipitation Index," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(2), pages 557-573, January.
    3. Yixuan Wang & Jianzhu Li & Ping Feng & Rong Hu, 2015. "A Time-Dependent Drought Index for Non-Stationary Precipitation Series," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(15), pages 5631-5647, December.
    4. Lina Eklund & Jonathan Seaquist, 2015. "Meteorological, agricultural and socioeconomic drought in the Duhok Governorate, Iraqi Kurdistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(1), pages 421-441, March.
    5. Javad Bazrafshan & Somayeh Hejabi & Jaber Rahimi, 2014. "Drought Monitoring Using the Multivariate Standardized Precipitation Index (MSPI)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(4), pages 1045-1060, March.
    6. Tayeb Raziei & Isabella Bordi & Luis Pereira, 2011. "An Application of GPCC and NCEP/NCAR Datasets for Drought Variability Analysis in Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(4), pages 1075-1086, March.
    7. I. García-Garizábal & J. Causapé & R. Abrahao & D. Merchan, 2014. "Impact of Climate Change on Mediterranean Irrigation Demand: Historical Dynamics of Climate and Future Projections," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(5), pages 1449-1462, March.
    8. Yuan-Chien Lin & En-Dian Kuo & Wan-Ju Chi, 2021. "Analysis of Meteorological Drought Resilience and Risk Assessment of Groundwater Using Signal Analysis Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 179-197, January.
    9. Sergio Vicente-Serrano, 2007. "Evaluating the Impact of Drought Using Remote Sensing in a Mediterranean, Semi-arid Region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 40(1), pages 173-208, January.
    10. Muhammad Imran Khan & Dong Liu & Qiang Fu & Shuhua Dong & Umar Waqas Liaqat & Muhammad Abrar Faiz & Yuxiang Hu & Qaisar Saddique, 2016. "Recent Climate Trends and Drought Behavioral Assessment Based on Precipitation and Temperature Data Series in the Songhua River Basin of China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(13), pages 4839-4859, October.
    11. Ana Paulo & Luis Pereira, 2008. "Stochastic Prediction of Drought Class Transitions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(9), pages 1277-1296, September.
    12. A. Capra & S. Consoli & B. Scicolone, 2013. "Long-Term Climatic Variability in Calabria and Effects on Drought and Agrometeorological Parameters," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(2), pages 601-617, January.
    13. Mohamed Meddi & Ali Assani & Hind Meddi, 2010. "Temporal Variability of Annual Rainfall in the Macta and Tafna Catchments, Northwestern Algeria," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(14), pages 3817-3833, November.
    14. Roman Rolbiecki & Ali Yücel & Joanna Kocięcka & Atılgan Atilgan & Monika Marković & Daniel Liberacki, 2022. "Analysis of SPI as a Drought Indicator during the Maize Growing Period in the Çukurova Region (Turkey)," Sustainability, MDPI, vol. 14(6), pages 1-29, March.
    15. J. Shiau, 2006. "Fitting Drought Duration and Severity with Two-Dimensional Copulas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 20(5), pages 795-815, October.
    16. A. Cancelliere & G. Mauro & B. Bonaccorso & G. Rossi, 2007. "Drought forecasting using the Standardized Precipitation Index," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(5), pages 801-819, May.
    17. Jha, Srinidhi & Goyal, Manish Kumar & Gupta, Brij & Gupta, Anil Kumar, 2021. "A novel analysis of COVID 19 risk in India incorporating climatic and socioeconomic Factors," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    18. Sandra Garcia Galiano & Juan Giraldo Osorio & Patricia Olmos Gimenez, 2016. "Drought Hazard Mapping from Regional Climate Multimodel Ensemble over Spain," Modern Applied Science, Canadian Center of Science and Education, vol. 10(2), pages 1-17, February.
    19. Alireza Shokoohi & Reza Morovati, 2015. "Basinwide Comparison of RDI and SPI Within an IWRM Framework," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 2011-2026, April.
    20. Muhammad Imran Khan & Dong Liu & Qiang Fu & Qaisar Saddique & Muhammad Abrar Faiz & Tianxiao Li & Muhammad Uzair Qamar & Song Cui & Chen Cheng, 2017. "Projected Changes of Future Extreme Drought Events under Numerous Drought Indices in the Heilongjiang Province of China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(12), pages 3921-3937, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:20:y:2006:i:6:p:899-915. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.