IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v271y2018i1d10.1007_s10479-018-2989-6.html
   My bibliography  Save this article

Recent results on assigned and unassigned distance geometry with applications to protein molecules and nanostructures

Author

Listed:
  • Simon J. L. Billinge

    (Columbia University
    Brookhaven National Laboratory)

  • Phillip M. Duxbury

    (Michigan State University)

  • Douglas S. Gonçalves

    (Universidade Federal de Santa Catarina)

  • Carlile Lavor

    (University of Campinas)

  • Antonio Mucherino

    (Université de Rennes 1)

Abstract

In the 2 years since our last 4OR review of distance geometry methods with applications to proteins and nanostructures, there has been rapid progress in treating uncertainties in the discretizable distance geometry problem; and a new class of geometry problems started to be explored, namely vector geometry problems. In this work we review this progress in the context of the earlier literature.

Suggested Citation

  • Simon J. L. Billinge & Phillip M. Duxbury & Douglas S. Gonçalves & Carlile Lavor & Antonio Mucherino, 2018. "Recent results on assigned and unassigned distance geometry with applications to protein molecules and nanostructures," Annals of Operations Research, Springer, vol. 271(1), pages 161-203, December.
  • Handle: RePEc:spr:annopr:v:271:y:2018:i:1:d:10.1007_s10479-018-2989-6
    DOI: 10.1007/s10479-018-2989-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-018-2989-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-018-2989-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. P. Juhás & D. M. Cherba & P. M. Duxbury & W. F. Punch & S. J. L. Billinge, 2006. "Ab initio determination of solid-state nanostructure," Nature, Nature, vol. 440(7084), pages 655-658, March.
    2. Felipe Fidalgo & Douglas S. Gonçalves & Carlile Lavor & Leo Liberti & Antonio Mucherino, 2018. "A symmetry-based splitting strategy for discretizable distance geometry problems," Journal of Global Optimization, Springer, vol. 71(4), pages 717-733, August.
    3. Antonio Mucherino & Carlile Lavor & Leo Liberti, 2012. "The Discretizable Distance Geometry Problem," Post-Print hal-00756943, HAL.
    4. Douglas S. Gonçalves & Antonio Mucherino & Carlile Lavor & Leo Liberti, 2017. "Recent advances on the interval distance geometry problem," Journal of Global Optimization, Springer, vol. 69(3), pages 525-545, November.
    5. Bradley Worley & Florent Delhommel & Florence Cordier & Thérèse E. Malliavin & Benjamin Bardiaux & Nicolas Wolff & Michael Nilges & Carlile Lavor & Leo Liberti, 2018. "Tuning interval Branch-and-Prune for protein structure determination," Journal of Global Optimization, Springer, vol. 72(1), pages 109-127, September.
    6. Cláudio P. Santiago & Carlile Lavor & Sérgio Assunção Monteiro & Alberto Kroner-Martins, 2018. "A new algorithm for the small-field astrometric point-pattern matching problem," Journal of Global Optimization, Springer, vol. 72(1), pages 55-70, September.
    7. Carlile Lavor & Leo Liberti & Nelson Maculan & Antonio Mucherino, 2012. "The discretizable molecular distance geometry problem," Computational Optimization and Applications, Springer, vol. 52(1), pages 115-146, May.
    8. Simon J. L. Billinge & Phillip M. Duxbury & Douglas S. Gonçalves & Carlile Lavor & Antonio Mucherino, 2016. "Assigned and unassigned distance geometry: applications to biological molecules and nanostructures," 4OR, Springer, vol. 14(4), pages 337-376, December.
    9. Virginia Costa & Antonio Mucherino & Carlile Lavor & Andrea Cassioli & Luiz Carvalho & Nelson Maculan, 2014. "Discretization orders for protein side chains," Journal of Global Optimization, Springer, vol. 60(2), pages 333-349, October.
    10. Leo Liberti & Carlile Lavor, 2018. "Open Research Areas in Distance Geometry," Springer Optimization and Its Applications, in: Panos M. Pardalos & Athanasios Migdalas (ed.), Open Problems in Optimization and Data Analysis, pages 183-223, Springer.
    11. Carlile Lavor & Leo Liberti & Antonio Mucherino, 2013. "The interval Branch-and-Prune algorithm for the discretizable molecular distance geometry problem with inexact distances," Journal of Global Optimization, Springer, vol. 56(3), pages 855-871, July.
    12. Jan Leeuw, 1988. "Convergence of the majorization method for multidimensional scaling," Journal of Classification, Springer;The Classification Society, vol. 5(2), pages 163-180, September.
    13. Lavor, Carlile & Liberti, Leo & Maculan, Nelson & Mucherino, Antonio, 2012. "Recent advances on the Discretizable Molecular Distance Geometry Problem," European Journal of Operational Research, Elsevier, vol. 219(3), pages 698-706.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carlile Lavor, 2020. "Comments on: Distance geometry and data science," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 340-345, July.
    2. Lavor, Carlile & Souza, Michael & Carvalho, Luiz M. & Gonçalves, Douglas S. & Mucherino, Antonio, 2021. "Improving the sampling process in the interval Branch-and-Prune algorithm for the discretizable molecular distance geometry problem," Applied Mathematics and Computation, Elsevier, vol. 389(C).
    3. Phil Duxbury & Carlile Lavor & Leo Liberti & Luiz Leduino Salles-Neto, 2022. "Unassigned distance geometry and molecular conformation problems," Journal of Global Optimization, Springer, vol. 83(1), pages 73-82, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Phil Duxbury & Carlile Lavor & Leo Liberti & Luiz Leduino Salles-Neto, 2022. "Unassigned distance geometry and molecular conformation problems," Journal of Global Optimization, Springer, vol. 83(1), pages 73-82, May.
    2. Lavor, Carlile & Souza, Michael & Carvalho, Luiz M. & Gonçalves, Douglas S. & Mucherino, Antonio, 2021. "Improving the sampling process in the interval Branch-and-Prune algorithm for the discretizable molecular distance geometry problem," Applied Mathematics and Computation, Elsevier, vol. 389(C).
    3. Simon J. L. Billinge & Phillip M. Duxbury & Douglas S. Gonçalves & Carlile Lavor & Antonio Mucherino, 2016. "Assigned and unassigned distance geometry: applications to biological molecules and nanostructures," 4OR, Springer, vol. 14(4), pages 337-376, December.
    4. Farid Alizadeh & Douglas Gonçalves & Nathan Krislock & Leo Liberti, 2018. "Preface: Special issue dedicated to Distance Geometry," Journal of Global Optimization, Springer, vol. 72(1), pages 1-4, September.
    5. Douglas S. Gonçalves & Antonio Mucherino & Carlile Lavor & Leo Liberti, 2017. "Recent advances on the interval distance geometry problem," Journal of Global Optimization, Springer, vol. 69(3), pages 525-545, November.
    6. Leo Liberti, 2020. "Distance geometry and data science," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 271-339, July.
    7. Virginia Costa & Antonio Mucherino & Carlile Lavor & Andrea Cassioli & Luiz Carvalho & Nelson Maculan, 2014. "Discretization orders for protein side chains," Journal of Global Optimization, Springer, vol. 60(2), pages 333-349, October.
    8. Felipe Fidalgo & Douglas S. Gonçalves & Carlile Lavor & Leo Liberti & Antonio Mucherino, 2018. "A symmetry-based splitting strategy for discretizable distance geometry problems," Journal of Global Optimization, Springer, vol. 71(4), pages 717-733, August.
    9. Bradley Worley & Florent Delhommel & Florence Cordier & Thérèse E. Malliavin & Benjamin Bardiaux & Nicolas Wolff & Michael Nilges & Carlile Lavor & Leo Liberti, 2018. "Tuning interval Branch-and-Prune for protein structure determination," Journal of Global Optimization, Springer, vol. 72(1), pages 109-127, September.
    10. Maurizio Bruglieri & Roberto Cordone & Leo Liberti, 2022. "Maximum feasible subsystems of distance geometry constraints," Journal of Global Optimization, Springer, vol. 83(1), pages 29-47, May.
    11. Martello, Silvano & Pinto Paixão, José M., 2012. "A look at the past and present of optimization – An editorial," European Journal of Operational Research, Elsevier, vol. 219(3), pages 638-640.
    12. Patrick Groenen & Rudolf Mathar & Willem Heiser, 1995. "The majorization approach to multidimensional scaling for Minkowski distances," Journal of Classification, Springer;The Classification Society, vol. 12(1), pages 3-19, March.
    13. Yves Crama & Michel Grabisch & Silvano Martello, 2022. "Sixty-one surveys in operations research," Annals of Operations Research, Springer, vol. 314(1), pages 5-13, July.
    14. Yves Crama & Michel Grabisch & Silvano Martello, 2022. "Preface," Annals of Operations Research, Springer, vol. 314(1), pages 1-3, July.
    15. de Leeuw, Jan & Mair, Patrick, 2009. "Multidimensional Scaling Using Majorization: SMACOF in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 31(i03).
    16. Wei Liu & Li Yang & Bo Yu, 2020. "A Lifting-Penalty Method for Quadratic Programming with a Quadratic Matrix Inequality Constraint," Mathematics, MDPI, vol. 8(2), pages 1-11, January.
    17. Moira MacNeil & Merve Bodur, 2022. "Integer Programming, Constraint Programming, and Hybrid Decomposition Approaches to Discretizable Distance Geometry Problems," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 297-314, January.
    18. Linghao Zhang & Bo Pang & Haitao Tang & Hongjun Wang & Chongshou Li & Zhipeng Luo, 2022. "Pairwise Constraints Multidimensional Scaling for Discriminative Feature Learning," Mathematics, MDPI, vol. 10(21), pages 1-16, November.
    19. Yves Crama & Michel Grabisch & Silvano Martello, 2021. "4OR comes of age," 4OR, Springer, vol. 19(1), pages 1-13, March.
    20. Michael J. Greenacre & Patrick J. F. Groenen, 2016. "Weighted Euclidean Biplots," Journal of Classification, Springer;The Classification Society, vol. 33(3), pages 442-459, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:271:y:2018:i:1:d:10.1007_s10479-018-2989-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.