IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v60y2007i2p231-239.html
   My bibliography  Save this article

Finding community structures in complex networks using mixed integer optimisation

Author

Listed:
  • G. Xu
  • S. Tsoka
  • L. G. Papageorgiou

Abstract

The detection of community structure has been used to reveal the relationships between individual objects and their groupings in networks. This paper presents a mathematical programming approach to identify the optimal community structures in complex networks based on the maximisation of a network modularity metric for partitioning a network into modules. The overall problem is formulated as a mixed integer quadratic programming (MIQP) model, which can then be solved to global optimality using standard optimisation software. The solution procedure is further enhanced by developing special symmetry-breaking constraints to eliminate equivalent solutions. It is shown that additional features such as minimum/maximum module size and balancing among modules can easily be incorporated in the model. The applicability of the proposed optimisation-based approach is demonstrated by four examples. Comparative results with other approaches from the literature show that the proposed methodology has superior performance while global optimum is guaranteed. Copyright EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Suggested Citation

  • G. Xu & S. Tsoka & L. G. Papageorgiou, 2007. "Finding community structures in complex networks using mixed integer optimisation," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 60(2), pages 231-239, November.
  • Handle: RePEc:spr:eurphb:v:60:y:2007:i:2:p:231-239
    DOI: 10.1140/epjb/e2007-00331-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1140/epjb/e2007-00331-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1140/epjb/e2007-00331-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Jianshe & Zhang, Long & Li, Yong & Jiao, Yang, 2016. "Partition signed social networks via clustering dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 568-582.
    2. Santiago, Rafael & Lamb, Luís C., 2017. "Efficient modularity density heuristics for large graphs," European Journal of Operational Research, Elsevier, vol. 258(3), pages 844-865.
    3. Costa, Alberto, 2015. "MILP formulations for the modularity density maximization problem," European Journal of Operational Research, Elsevier, vol. 245(1), pages 14-21.
    4. Leo Liberti, 2020. "Distance geometry and data science," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 271-339, July.
    5. Harun Pirim & Burak Eksioglu & Fred W. Glover, 2018. "A Novel Mixed Integer Linear Programming Model for Clustering Relational Networks," Journal of Optimization Theory and Applications, Springer, vol. 176(2), pages 492-508, February.
    6. Li, Zhangtao & Liu, Jing, 2016. "A multi-agent genetic algorithm for community detection in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 336-347.
    7. Sonia Cafieri & Alberto Costa & Pierre Hansen, 2014. "Reformulation of a model for hierarchical divisive graph modularity maximization," Annals of Operations Research, Springer, vol. 222(1), pages 213-226, November.
    8. Liu, X. & Murata, T., 2010. "Advanced modularity-specialized label propagation algorithm for detecting communities in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(7), pages 1493-1500.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:60:y:2007:i:2:p:231-239. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.