A machine learning approach of predicting high potential archers by means of physical fitness indicators
Author
Abstract
Suggested Citation
DOI: 10.1371/journal.pone.0209638
Download full text from publisher
References listed on IDEAS
- Schumacher, Martin & Ro[ss]ner, Reinhard & Vach, Werner, 1996. "Neural networks and logistic regression: Part I," Computational Statistics & Data Analysis, Elsevier, vol. 21(6), pages 661-682, June.
- Vach, Werner & Ro[ss]ner, Reinhard & Schumacher, Martin, 1996. "Neural networks and logistic regression: Part II," Computational Statistics & Data Analysis, Elsevier, vol. 21(6), pages 683-701, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Seung-Hun Lee & Hyeon-Seong Ju & Sang-Hun Lee & Sung-Woo Kim & Hun-Young Park & Seung-Wan Kang & Young-Eun Song & Kiwon Lim & Hoeryong Jung, 2021. "Estimation of Health-Related Physical Fitness (HRPF) Levels of the General Public Using Artificial Neural Network with the National Fitness Award (NFA) Datasets," IJERPH, MDPI, vol. 18(19), pages 1-13, October.
- Vijayamurugan Eswaramoorthi & Muhammad Zulhusni Suhaimi & Mohamad Razali Abdullah & Zulkefli Sanip & Anwar P. P. Abdul Majeed & Muhammad Zuhaili Suhaimi & Cain C. T. Clark & Rabiu Muazu Musa, 2022. "Association of Physical Activity with Anthropometrics Variables and Health-Related Risks in Healthy Male Smokers," IJERPH, MDPI, vol. 19(12), pages 1-15, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Leo Liberti, 2020. "Distance geometry and data science," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 271-339, July.
- Jiangping Gao & Xiangyang Shi & Linghui Li & Ziqiang Zhou & Junfeng Wang, 2022. "Assessment of Landslide Susceptibility Using Different Machine Learning Methods in Longnan City, China," Sustainability, MDPI, vol. 14(24), pages 1-26, December.
- Zhang, G. Peter & Keil, Mark & Rai, Arun & Mann, Joan, 2003. "Predicting information technology project escalation: A neural network approach," European Journal of Operational Research, Elsevier, vol. 146(1), pages 115-129, April.
- Reggiani, Aura & Nijkamp, Peter & Nobilio, Lucia, 1997. "Spatial modal patterns in European freight transport networks: results of neurocomputing and logit models," Serie Research Memoranda 0029, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
- H. Pourghasemi & H. Moradi & S. Fatemi Aghda, 2013. "Landslide susceptibility mapping by binary logistic regression, analytical hierarchy process, and statistical index models and assessment of their performances," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 749-779, October.
- Manojit Chattopadhyay & Subrata Kumar Mitra, 2017. "Applicability and effectiveness of classifications models for achieving the twin objectives of growth and outreach of microfinance institutions," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 451-474, December.
- Gaudart, Jean & Giusiano, Bernard & Huiart, Laetitia, 2004. "Comparison of the performance of multi-layer perceptron and linear regression for epidemiological data," Computational Statistics & Data Analysis, Elsevier, vol. 44(4), pages 547-570, January.
- Alex Nosenko & Yuan Cheng & Haiquan Chen, 2023. "Password and Passphrase Guessing with Recurrent Neural Networks," Information Systems Frontiers, Springer, vol. 25(2), pages 549-565, April.
- Marie Lebreton & Katia Melnik, 2009. "Voluntary Participation as a Determinant of Social Capital in France : Allowing for Parameter Heterogeneity," Working Papers halshs-00410530, HAL.
- Peltonen, Tuomas A., 2006. "Are emerging market currency crises predictable? A test," Working Paper Series 571, European Central Bank.
- Schumacher, Martin & Ro[ss]ner, Reinhard & Vach, Werner, 1996. "Neural networks and logistic regression: Part I," Computational Statistics & Data Analysis, Elsevier, vol. 21(6), pages 661-682, June.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0209638. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.