IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v83y2022i1d10.1007_s10898-021-01003-4.html
   My bibliography  Save this article

Maximum feasible subsystems of distance geometry constraints

Author

Listed:
  • Maurizio Bruglieri

    (Politecnico di Milano)

  • Roberto Cordone

    (Università degli Studi di Milano)

  • Leo Liberti

    (LIX CNRS Ecole Polytechnique, Institut Polytechnique de Paris)

Abstract

We study the problem of satisfying the maximum number of distance geometry constraints with minimum experimental error. This models the determination of the shape of proteins from atomic distance data which are obtained from nuclear magnetic resonance experiments and exhibit experimental and systematic errors. Experimental errors are represented by interval constraints on Euclidean distances. Systematic errors occur from a misassignment of distances to wrong atomic pairs: we represent such errors by maximizing the number of satisfiable distance constraints. We present many mathematical programming formulations, as well as a “matheuristic” algorithm based on reformulations, relaxations, restrictions and refinement. We show that this algorithm works on protein graphs with hundreds of atoms and thousands of distances.

Suggested Citation

  • Maurizio Bruglieri & Roberto Cordone & Leo Liberti, 2022. "Maximum feasible subsystems of distance geometry constraints," Journal of Global Optimization, Springer, vol. 83(1), pages 29-47, May.
  • Handle: RePEc:spr:jglopt:v:83:y:2022:i:1:d:10.1007_s10898-021-01003-4
    DOI: 10.1007/s10898-021-01003-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-021-01003-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-021-01003-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dimitris Achlioptas & Assaf Naor & Yuval Peres, 2005. "Rigorous location of phase transitions in hard optimization problems," Nature, Nature, vol. 435(7043), pages 759-764, June.
    2. Leo Liberti, 2020. "Rejoinder on: Distance geometry and data science," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 350-357, July.
    3. Douglas S. Gonçalves & Antonio Mucherino & Carlile Lavor & Leo Liberti, 2017. "Recent advances on the interval distance geometry problem," Journal of Global Optimization, Springer, vol. 69(3), pages 525-545, November.
    4. Leo Liberti & Fabrizio Marinelli, 2014. "Mathematical programming: Turing completeness and applications to software analysis," Journal of Combinatorial Optimization, Springer, vol. 28(1), pages 82-104, July.
    5. Carlile Lavor & Leo Liberti & Antonio Mucherino, 2013. "The interval Branch-and-Prune algorithm for the discretizable molecular distance geometry problem with inexact distances," Journal of Global Optimization, Springer, vol. 56(3), pages 855-871, July.
    6. Leo Liberti, 2020. "Distance geometry and data science," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 271-339, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leo Liberti, 2020. "Distance geometry and data science," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 271-339, July.
    2. Lavor, Carlile & Souza, Michael & Carvalho, Luiz M. & Gonçalves, Douglas S. & Mucherino, Antonio, 2021. "Improving the sampling process in the interval Branch-and-Prune algorithm for the discretizable molecular distance geometry problem," Applied Mathematics and Computation, Elsevier, vol. 389(C).
    3. Emilio Carrizosa & Cristina Molero-Río & Dolores Romero Morales, 2021. "Mathematical optimization in classification and regression trees," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 5-33, April.
    4. Simon J. L. Billinge & Phillip M. Duxbury & Douglas S. Gonçalves & Carlile Lavor & Antonio Mucherino, 2018. "Recent results on assigned and unassigned distance geometry with applications to protein molecules and nanostructures," Annals of Operations Research, Springer, vol. 271(1), pages 161-203, December.
    5. Bradley Worley & Florent Delhommel & Florence Cordier & Thérèse E. Malliavin & Benjamin Bardiaux & Nicolas Wolff & Michael Nilges & Carlile Lavor & Leo Liberti, 2018. "Tuning interval Branch-and-Prune for protein structure determination," Journal of Global Optimization, Springer, vol. 72(1), pages 109-127, September.
    6. David E. Bernal & Zedong Peng & Jan Kronqvist & Ignacio E. Grossmann, 2022. "Alternative regularizations for Outer-Approximation algorithms for convex MINLP," Journal of Global Optimization, Springer, vol. 84(4), pages 807-842, December.
    7. Leo Lopes & Kate Smith-Miles, 2013. "Generating Applicable Synthetic Instances for Branch Problems," Operations Research, INFORMS, vol. 61(3), pages 563-577, June.
    8. Moira MacNeil & Merve Bodur, 2022. "Integer Programming, Constraint Programming, and Hybrid Decomposition Approaches to Discretizable Distance Geometry Problems," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 297-314, January.
    9. Jing Shen & Yaofeng Ren, 2016. "Bounding the scaling window of random constraint satisfaction problems," Journal of Combinatorial Optimization, Springer, vol. 31(2), pages 786-801, February.
    10. Jooken, Jorik & Leyman, Pieter & De Causmaecker, Patrick, 2022. "A new class of hard problem instances for the 0–1 knapsack problem," European Journal of Operational Research, Elsevier, vol. 301(3), pages 841-854.
    11. Virginia Costa & Antonio Mucherino & Carlile Lavor & Andrea Cassioli & Luiz Carvalho & Nelson Maculan, 2014. "Discretization orders for protein side chains," Journal of Global Optimization, Springer, vol. 60(2), pages 333-349, October.
    12. Olawale Titiloye & Alan Crispin, 2012. "Parameter Tuning Patterns for Random Graph Coloring with Quantum Annealing," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-9, November.
    13. Farid Alizadeh & Douglas Gonçalves & Nathan Krislock & Leo Liberti, 2018. "Preface: Special issue dedicated to Distance Geometry," Journal of Global Optimization, Springer, vol. 72(1), pages 1-4, September.
    14. Phil Duxbury & Carlile Lavor & Leo Liberti & Luiz Leduino Salles-Neto, 2022. "Unassigned distance geometry and molecular conformation problems," Journal of Global Optimization, Springer, vol. 83(1), pages 73-82, May.
    15. Jeff Kahn & Gil Kalai, 2006. "Thresholds and expectation thresholds," Levine's Bibliography 122247000000001294, UCLA Department of Economics.
    16. Felipe Fidalgo & Douglas S. Gonçalves & Carlile Lavor & Leo Liberti & Antonio Mucherino, 2018. "A symmetry-based splitting strategy for discretizable distance geometry problems," Journal of Global Optimization, Springer, vol. 71(4), pages 717-733, August.
    17. Jooken, Jorik & Leyman, Pieter & De Causmaecker, Patrick, 2023. "Features for the 0-1 knapsack problem based on inclusionwise maximal solutions," European Journal of Operational Research, Elsevier, vol. 311(1), pages 36-55.
    18. Douglas S. Gonçalves & Antonio Mucherino & Carlile Lavor & Leo Liberti, 2017. "Recent advances on the interval distance geometry problem," Journal of Global Optimization, Springer, vol. 69(3), pages 525-545, November.
    19. Leo Liberti & Benedetto Manca, 2022. "Side-constrained minimum sum-of-squares clustering: mathematical programming and random projections," Journal of Global Optimization, Springer, vol. 83(1), pages 83-118, May.
    20. Guy Kindler & Assaf Naor & Gideon Schechtman, 2010. "The UGC Hardness Threshold of the L p Grothendieck Problem," Mathematics of Operations Research, INFORMS, vol. 35(2), pages 267-283, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:83:y:2022:i:1:d:10.1007_s10898-021-01003-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.