IDEAS home Printed from https://ideas.repec.org/a/spr/topjnl/v28y2020i2d10.1007_s11750-020-00546-1.html
   My bibliography  Save this article

Optimality conditions for approximate proper solutions in multiobjective optimization with polyhedral cones

Author

Listed:
  • C. Gutiérrez

    (IMUVA (Institute of Mathematics of University of Valladolid))

  • L. Huerga

    (E.T.S.I. Industriales, Universidad Nacional de Educación a Distancia)

  • B. Jiménez

    (E.T.S.I. Industriales, Universidad Nacional de Educación a Distancia)

  • V. Novo

    (E.T.S.I. Industriales, Universidad Nacional de Educación a Distancia)

Abstract

In this paper, we provide optimality conditions for approximate proper solutions of a multiobjective optimization problem, whose feasible set is given by a cone constraint and the ordering cone is polyhedral. A first class of optimality conditions is given by means of a nonlinear scalar Lagrangian and the second kind through a linear scalarization technique, under generalized convexity hypotheses, that lets us derive a Kuhn–Tucker multiplier rule.

Suggested Citation

  • C. Gutiérrez & L. Huerga & B. Jiménez & V. Novo, 2020. "Optimality conditions for approximate proper solutions in multiobjective optimization with polyhedral cones," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 526-544, July.
  • Handle: RePEc:spr:topjnl:v:28:y:2020:i:2:d:10.1007_s11750-020-00546-1
    DOI: 10.1007/s11750-020-00546-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11750-020-00546-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11750-020-00546-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. Dutta, 2005. "Necessary optimality conditions and saddle points for approximate optimization in banach spaces," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 13(1), pages 127-143, June.
    2. M. Chicco & F. Mignanego & L. Pusillo & S. Tijs, 2011. "Vector Optimization Problems via Improvement Sets," Journal of Optimization Theory and Applications, Springer, vol. 150(3), pages 516-529, September.
    3. C. S. Lalitha & Prashanto Chatterjee, 2015. "Stability and Scalarization in Vector Optimization Using Improvement Sets," Journal of Optimization Theory and Applications, Springer, vol. 166(3), pages 825-843, September.
    4. Giorgio Giorgi & Bienvenido Jiménez & Vicente Novo, 2016. "Approximate Karush–Kuhn–Tucker Condition in Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 171(1), pages 70-89, October.
    5. G. Giorgi & B. Jiménez & V. Novo, 2009. "Strong Kuhn–Tucker conditions and constraint qualifications in locally Lipschitz multiobjective optimization problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 17(2), pages 288-304, December.
    6. C. Gutiérrez & B. Jiménez & V. Novo, 2006. "On Approximate Efficiency in Multiobjective Programming," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 64(1), pages 165-185, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nguyen Van Hung & Vicente Novo & Vo Minh Tam, 2022. "Error bound analysis for vector equilibrium problems with partial order provided by a polyhedral cone," Journal of Global Optimization, Springer, vol. 82(1), pages 139-159, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. C. Gutiérrez & L. Huerga & B. Jiménez & V. Novo, 2018. "Approximate solutions of vector optimization problems via improvement sets in real linear spaces," Journal of Global Optimization, Springer, vol. 70(4), pages 875-901, April.
    2. Gutiérrez, C. & Jiménez, B. & Novo, V., 2012. "Improvement sets and vector optimization," European Journal of Operational Research, Elsevier, vol. 223(2), pages 304-311.
    3. Ying Gao & Xin-Min Yang, 2019. "Properties of the nonlinear scalar functional and its applications to vector optimization problems," Journal of Global Optimization, Springer, vol. 73(4), pages 869-889, April.
    4. P. Kesarwani & P. K. Shukla & J. Dutta & K. Deb, 2022. "Approximations for Pareto and Proper Pareto solutions and their KKT conditions," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 96(1), pages 123-148, August.
    5. Jiawei Chen & La Huang & Shengjie Li, 2018. "Separations and Optimality of Constrained Multiobjective Optimization via Improvement Sets," Journal of Optimization Theory and Applications, Springer, vol. 178(3), pages 794-823, September.
    6. Gabriele Eichfelder & Leo Warnow, 2021. "Proximity measures based on KKT points for constrained multi-objective optimization," Journal of Global Optimization, Springer, vol. 80(1), pages 63-86, May.
    7. Min Feng & Shengjie Li & Jie Wang, 2022. "On Tucker-Type Alternative Theorems and Necessary Optimality Conditions for Nonsmooth Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 195(2), pages 480-503, November.
    8. Pirro Oppezzi & Anna Rossi, 2015. "Improvement Sets and Convergence of Optimal Points," Journal of Optimization Theory and Applications, Springer, vol. 165(2), pages 405-419, May.
    9. L. P. Hai & L. Huerga & P. Q. Khanh & V. Novo, 2019. "Variants of the Ekeland variational principle for approximate proper solutions of vector equilibrium problems," Journal of Global Optimization, Springer, vol. 74(2), pages 361-382, June.
    10. Maurizio Chicco & Anna Rossi, 2015. "Existence of Optimal Points Via Improvement Sets," Journal of Optimization Theory and Applications, Springer, vol. 167(2), pages 487-501, November.
    11. Elena Constantin, 2020. "Second-Order Optimality Conditions in Locally Lipschitz Inequality-Constrained Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 186(1), pages 50-67, July.
    12. Elena Constantin, 2019. "Necessary conditions for weak efficiency for nonsmooth degenerate multiobjective optimization problems," Journal of Global Optimization, Springer, vol. 75(1), pages 111-129, September.
    13. Giorgio Giorgi, 2018. "A Guided Tour in Constraint Qualifications for Nonlinear Programming under Differentiability Assumptions," DEM Working Papers Series 160, University of Pavia, Department of Economics and Management.
    14. Marius Durea & Radu Strugariu, 2020. "On the sensitivity of Pareto efficiency in set-valued optimization problems," Journal of Global Optimization, Springer, vol. 78(3), pages 581-596, November.
    15. C. Gutiérrez & R. López & J. Martínez, 2022. "Generalized $${\varepsilon }$$ ε -quasi solutions of set optimization problems," Journal of Global Optimization, Springer, vol. 82(3), pages 559-576, March.
    16. C. Gutiérrez & B. Jiménez & V. Novo, 2012. "Equivalent ε-efficiency notions in vector optimization," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 437-455, July.
    17. C. Gutiérrez & L. Huerga & V. Novo & C. Tammer, 2016. "Duality related to approximate proper solutions of vector optimization problems," Journal of Global Optimization, Springer, vol. 64(1), pages 117-139, January.
    18. Fabián Flores-Bazán & Fernando Flores-Bazán & Sigifredo Laengle, 2015. "Characterizing Efficiency on Infinite-dimensional Commodity Spaces with Ordering Cones Having Possibly Empty Interior," Journal of Optimization Theory and Applications, Springer, vol. 164(2), pages 455-478, February.
    19. T. Q. Son & J. J. Strodiot & V. H. Nguyen, 2009. "ε-Optimality and ε-Lagrangian Duality for a Nonconvex Programming Problem with an Infinite Number of Constraints," Journal of Optimization Theory and Applications, Springer, vol. 141(2), pages 389-409, May.
    20. Giorgio, 2019. "On Second-Order Optimality Conditions in Smooth Nonlinear Programming Problems," DEM Working Papers Series 171, University of Pavia, Department of Economics and Management.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:topjnl:v:28:y:2020:i:2:d:10.1007_s11750-020-00546-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.