IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v82y2022i3d10.1007_s10898-021-01098-9.html
   My bibliography  Save this article

Generalized $${\varepsilon }$$ ε -quasi solutions of set optimization problems

Author

Listed:
  • C. Gutiérrez

    (University of Valladolid)

  • R. López

    (Universidad de Tarapacá)

  • J. Martínez

    (Universidad de Tarapacá)

Abstract

We introduce notions of generalized $$\varepsilon $$ ε -quasi solutions to approximate set type solutions of set optimization problems. We study their properties, consistency and limit behavior as approximations to efficient and strict weak efficient solutions. Moreover, we prove an existence result for such solutions and a bound for their asymptotic cone. Finally, we obtain optimality conditions for them.

Suggested Citation

  • C. Gutiérrez & R. López & J. Martínez, 2022. "Generalized $${\varepsilon }$$ ε -quasi solutions of set optimization problems," Journal of Global Optimization, Springer, vol. 82(3), pages 559-576, March.
  • Handle: RePEc:spr:jglopt:v:82:y:2022:i:3:d:10.1007_s10898-021-01098-9
    DOI: 10.1007/s10898-021-01098-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-021-01098-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-021-01098-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Y. Gao & S. H. Hou & X. M. Yang, 2012. "Existence and Optimality Conditions for Approximate Solutions to Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 152(1), pages 97-120, January.
    2. J. Dutta, 2005. "Necessary optimality conditions and saddle points for approximate optimization in banach spaces," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 13(1), pages 127-143, June.
    3. C. Gutiérrez & B. Jiménez & V. Novo, 2015. "Optimality Conditions for Quasi-Solutions of Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 167(3), pages 796-820, December.
    4. Qiusheng Qiu & Xinmin Yang, 2010. "Some properties of approximate solutions for vector optimization problem with set-valued functions," Journal of Global Optimization, Springer, vol. 47(1), pages 1-12, May.
    5. C. Gutiérrez & B. Jiménez & V. Novo, 2011. "A generic approach to approximate efficiency and applications to vector optimization with set-valued maps," Journal of Global Optimization, Springer, vol. 49(2), pages 313-342, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qamrul Hasan Ansari & Pradeep Kumar Sharma, 2022. "Some Properties of Generalized Oriented Distance Function and their Applications to Set Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 247-279, June.
    2. M. Chicco & F. Mignanego & L. Pusillo & S. Tijs, 2011. "Vector Optimization Problems via Improvement Sets," Journal of Optimization Theory and Applications, Springer, vol. 150(3), pages 516-529, September.
    3. Gutiérrez, C. & Jiménez, B. & Novo, V., 2012. "Improvement sets and vector optimization," European Journal of Operational Research, Elsevier, vol. 223(2), pages 304-311.
    4. Thai Doan Chuong, 2022. "Approximate solutions in nonsmooth and nonconvex cone constrained vector optimization," Annals of Operations Research, Springer, vol. 311(2), pages 997-1015, April.
    5. C. Gutiérrez & L. Huerga & V. Novo & C. Tammer, 2016. "Duality related to approximate proper solutions of vector optimization problems," Journal of Global Optimization, Springer, vol. 64(1), pages 117-139, January.
    6. T. Q. Son & J. J. Strodiot & V. H. Nguyen, 2009. "ε-Optimality and ε-Lagrangian Duality for a Nonconvex Programming Problem with an Infinite Number of Constraints," Journal of Optimization Theory and Applications, Springer, vol. 141(2), pages 389-409, May.
    7. Ying Gao & Xin-Min Yang, 2019. "Properties of the nonlinear scalar functional and its applications to vector optimization problems," Journal of Global Optimization, Springer, vol. 73(4), pages 869-889, April.
    8. T. Son & D. Kim, 2013. "ε-Mixed type duality for nonconvex multiobjective programs with an infinite number of constraints," Journal of Global Optimization, Springer, vol. 57(2), pages 447-465, October.
    9. Liguo Jiao & Jae Hyoung Lee, 2018. "Approximate Optimality and Approximate Duality for Quasi Approximate Solutions in Robust Convex Semidefinite Programs," Journal of Optimization Theory and Applications, Springer, vol. 176(1), pages 74-93, January.
    10. Wang Chen & Xinmin Yang & Yong Zhao, 2023. "Conditional gradient method for vector optimization," Computational Optimization and Applications, Springer, vol. 85(3), pages 857-896, July.
    11. C. Gutiérrez & L. Huerga & B. Jiménez & V. Novo, 2020. "Optimality conditions for approximate proper solutions in multiobjective optimization with polyhedral cones," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 526-544, July.
    12. Xin Xu & Yang Dong Xu, 2019. "Connectedness and Path Connectedness of Weak Efficient Solution Sets of Vector Optimization Problems via Nonlinear Scalarization Methods," Mathematics, MDPI, vol. 7(10), pages 1-10, October.
    13. Jiawei Chen & Qamrul Hasan Ansari & Yeong-Cheng Liou & Jen-Chih Yao, 2016. "A proximal point algorithm based on decomposition method for cone constrained multiobjective optimization problems," Computational Optimization and Applications, Springer, vol. 65(1), pages 289-308, September.
    14. C. Gutiérrez & B. Jiménez & V. Novo, 2015. "Optimality Conditions for Quasi-Solutions of Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 167(3), pages 796-820, December.
    15. C. S. Lalitha & Prashanto Chatterjee, 2015. "Stability and Scalarization in Vector Optimization Using Improvement Sets," Journal of Optimization Theory and Applications, Springer, vol. 166(3), pages 825-843, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:82:y:2022:i:3:d:10.1007_s10898-021-01098-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.