IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v171y2016i1d10.1007_s10957-016-0986-y.html
   My bibliography  Save this article

Approximate Karush–Kuhn–Tucker Condition in Multiobjective Optimization

Author

Listed:
  • Giorgio Giorgi

    (University of Pavia)

  • Bienvenido Jiménez

    (Universidad Nacional de Educación a Distancia (UNED))

  • Vicente Novo

    (Universidad Nacional de Educación a Distancia (UNED))

Abstract

We extend the so-called approximate Karush–Kuhn–Tucker condition from a scalar optimization problem with equality and inequality constraints to a multiobjective optimization problem. We prove that this condition is necessary for a point to be a local weak efficient solution without any constraint qualification, and is also sufficient under convexity assumptions. We also state that an enhanced Fritz John-type condition is also necessary for local weak efficiency, and under the additional quasi-normality constraint qualification becomes an enhanced Karush–Kuhn–Tucker condition. Finally, we study some relations between these concepts and the notion of bounded approximate Karush–Kuhn–Tucker condition, which is introduced in this paper.

Suggested Citation

  • Giorgio Giorgi & Bienvenido Jiménez & Vicente Novo, 2016. "Approximate Karush–Kuhn–Tucker Condition in Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 171(1), pages 70-89, October.
  • Handle: RePEc:spr:joptap:v:171:y:2016:i:1:d:10.1007_s10957-016-0986-y
    DOI: 10.1007/s10957-016-0986-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-016-0986-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-016-0986-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. Andreani & J. M. Martinez & M. L. Schuverdt, 2005. "On the Relation between Constant Positive Linear Dependence Condition and Quasinormality Constraint Qualification," Journal of Optimization Theory and Applications, Springer, vol. 125(2), pages 473-483, May.
    2. Joydeep Dutta & Kalyanmoy Deb & Rupesh Tulshyan & Ramnik Arora, 2013. "Approximate KKT points and a proximity measure for termination," Journal of Global Optimization, Springer, vol. 56(4), pages 1463-1499, August.
    3. K. O. Kortanek & J. P. Evans, 1968. "Asymptotic Lagrange Regularity for Pseudoconcave Programming with Weak Constraint Qualification," Operations Research, INFORMS, vol. 16(4), pages 849-857, August.
    4. D.P. Bertsekas & A.E. Ozdaglar, 2002. "Pseudonormality and a Lagrange Multiplier Theory for Constrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 114(2), pages 287-343, August.
    5. Gabriel Haeser & María Laura Schuverdt, 2011. "On Approximate KKT Condition and its Extension to Continuous Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 149(3), pages 528-539, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gabriele Eichfelder & Leo Warnow, 2021. "Proximity measures based on KKT points for constrained multi-objective optimization," Journal of Global Optimization, Springer, vol. 80(1), pages 63-86, May.
    2. Giorgio, 2019. "On Second-Order Optimality Conditions in Smooth Nonlinear Programming Problems," DEM Working Papers Series 171, University of Pavia, Department of Economics and Management.
    3. Gabriel Haeser & Alberto Ramos, 2020. "Constraint Qualifications for Karush–Kuhn–Tucker Conditions in Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 187(2), pages 469-487, November.
    4. Marius Durea & Radu Strugariu, 2020. "On the sensitivity of Pareto efficiency in set-valued optimization problems," Journal of Global Optimization, Springer, vol. 78(3), pages 581-596, November.
    5. C. Gutiérrez & L. Huerga & B. Jiménez & V. Novo, 2020. "Optimality conditions for approximate proper solutions in multiobjective optimization with polyhedral cones," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 526-544, July.
    6. Roberto Andreani & Ellen H. Fukuda & Gabriel Haeser & Daiana O. Santos & Leonardo D. Secchin, 2024. "Optimality Conditions for Nonlinear Second-Order Cone Programming and Symmetric Cone Programming," Journal of Optimization Theory and Applications, Springer, vol. 200(1), pages 1-33, January.
    7. P. Kesarwani & P. K. Shukla & J. Dutta & K. Deb, 2022. "Approximations for Pareto and Proper Pareto solutions and their KKT conditions," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 96(1), pages 123-148, August.
    8. Giorgio Giorgi, 2018. "A Guided Tour in Constraint Qualifications for Nonlinear Programming under Differentiability Assumptions," DEM Working Papers Series 160, University of Pavia, Department of Economics and Management.
    9. Min Feng & Shengjie Li, 2018. "An approximate strong KKT condition for multiobjective optimization," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(3), pages 489-509, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roberto Andreani & José Mario Martínez & Alberto Ramos & Paulo J. S. Silva, 2018. "Strict Constraint Qualifications and Sequential Optimality Conditions for Constrained Optimization," Mathematics of Operations Research, INFORMS, vol. 43(3), pages 693-717, August.
    2. Kuang Bai & Yixia Song & Jin Zhang, 2023. "Second-Order Enhanced Optimality Conditions and Constraint Qualifications," Journal of Optimization Theory and Applications, Springer, vol. 198(3), pages 1264-1284, September.
    3. Giorgio Giorgi & Bienvenido Jiménez & Vicente Novo, 2014. "Some Notes on Approximate Optimality Conditions in Scalar and Vector Optimization Problems," DEM Working Papers Series 095, University of Pavia, Department of Economics and Management.
    4. Giorgio Giorgi, 2018. "A Guided Tour in Constraint Qualifications for Nonlinear Programming under Differentiability Assumptions," DEM Working Papers Series 160, University of Pavia, Department of Economics and Management.
    5. Min Feng & Shengjie Li, 2018. "An approximate strong KKT condition for multiobjective optimization," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(3), pages 489-509, October.
    6. Roberto Andreani & Ellen H. Fukuda & Gabriel Haeser & Daiana O. Santos & Leonardo D. Secchin, 2024. "Optimality Conditions for Nonlinear Second-Order Cone Programming and Symmetric Cone Programming," Journal of Optimization Theory and Applications, Springer, vol. 200(1), pages 1-33, January.
    7. R. Andreani & C. E. Echagüe & M. L. Schuverdt, 2010. "Constant-Rank Condition and Second-Order Constraint Qualification," Journal of Optimization Theory and Applications, Springer, vol. 146(2), pages 255-266, August.
    8. Christian Kanzow & Andreas B. Raharja & Alexandra Schwartz, 2021. "An Augmented Lagrangian Method for Cardinality-Constrained Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 189(3), pages 793-813, June.
    9. G. L. Yi & Y. K. Sui, 2016. "An Adaptive Approach to Adjust Constraint Bounds and its Application in Structural Topology Optimization," Journal of Optimization Theory and Applications, Springer, vol. 169(2), pages 656-670, May.
    10. L. F. Bueno & G. Haeser & J. M. Martínez, 2015. "A Flexible Inexact-Restoration Method for Constrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 165(1), pages 188-208, April.
    11. Bo Jiang & Tianyi Lin & Shiqian Ma & Shuzhong Zhang, 2019. "Structured nonconvex and nonsmooth optimization: algorithms and iteration complexity analysis," Computational Optimization and Applications, Springer, vol. 72(1), pages 115-157, January.
    12. Chungen Shen & Lei-Hong Zhang & Wei Liu, 2016. "A stabilized filter SQP algorithm for nonlinear programming," Journal of Global Optimization, Springer, vol. 65(4), pages 677-708, August.
    13. Leonid Minchenko, 2019. "Note on Mangasarian–Fromovitz-Like Constraint Qualifications," Journal of Optimization Theory and Applications, Springer, vol. 182(3), pages 1199-1204, September.
    14. Chungen Shen & Lei-Hong Zhang & Bo Wang & Wenqiong Shao, 2014. "Global and local convergence of a nonmonotone SQP method for constrained nonlinear optimization," Computational Optimization and Applications, Springer, vol. 59(3), pages 435-473, December.
    15. L. Minchenko & A. Tarakanov, 2011. "On Error Bounds for Quasinormal Programs," Journal of Optimization Theory and Applications, Springer, vol. 148(3), pages 571-579, March.
    16. Liguo Jiao & Jae Hyoung Lee, 2018. "Approximate Optimality and Approximate Duality for Quasi Approximate Solutions in Robust Convex Semidefinite Programs," Journal of Optimization Theory and Applications, Springer, vol. 176(1), pages 74-93, January.
    17. Nguyen Huy Chieu & Gue Myung Lee, 2014. "Constraint Qualifications for Mathematical Programs with Equilibrium Constraints and their Local Preservation Property," Journal of Optimization Theory and Applications, Springer, vol. 163(3), pages 755-776, December.
    18. R. Andreani & J. M. Martinez & M. L. Schuverdt, 2005. "On the Relation between Constant Positive Linear Dependence Condition and Quasinormality Constraint Qualification," Journal of Optimization Theory and Applications, Springer, vol. 125(2), pages 473-483, May.
    19. A. Pascoletti & P. Serafini, 2007. "Differential Conditions for Constrained Nonlinear Programming via Pareto Optimization," Journal of Optimization Theory and Applications, Springer, vol. 134(3), pages 399-411, September.
    20. Christian Kanzow & Alexandra Schwartz, 2015. "The Price of Inexactness: Convergence Properties of Relaxation Methods for Mathematical Programs with Complementarity Constraints Revisited," Mathematics of Operations Research, INFORMS, vol. 40(2), pages 253-275, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:171:y:2016:i:1:d:10.1007_s10957-016-0986-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.