IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v80y2021i1d10.1007_s10898-020-00971-3.html
   My bibliography  Save this article

Proximity measures based on KKT points for constrained multi-objective optimization

Author

Listed:
  • Gabriele Eichfelder

    (Technische Universität Ilmenau)

  • Leo Warnow

    (Technische Universität Ilmenau)

Abstract

An important aspect of optimization algorithms, for instance evolutionary algorithms, are termination criteria that measure the proximity of the found solution to the optimal solution set. A frequently used approach is the numerical verification of necessary optimality conditions such as the Karush–Kuhn–Tucker (KKT) conditions. In this paper, we present a proximity measure which characterizes the violation of the KKT conditions. It can be computed easily and is continuous in every efficient solution. Hence, it can be used as an indicator for the proximity of a certain point to the set of efficient (Edgeworth-Pareto-minimal) solutions and is well suited for algorithmic use due to its continuity properties. This is especially useful within evolutionary algorithms for candidate selection and termination, which we also illustrate numerically for some test problems.

Suggested Citation

  • Gabriele Eichfelder & Leo Warnow, 2021. "Proximity measures based on KKT points for constrained multi-objective optimization," Journal of Global Optimization, Springer, vol. 80(1), pages 63-86, May.
  • Handle: RePEc:spr:jglopt:v:80:y:2021:i:1:d:10.1007_s10898-020-00971-3
    DOI: 10.1007/s10898-020-00971-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-020-00971-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-020-00971-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Min Feng & Shengjie Li, 2018. "An approximate strong KKT condition for multiobjective optimization," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(3), pages 489-509, October.
    2. Giorgio Giorgi & Bienvenido Jiménez & Vicente Novo, 2016. "Approximate Karush–Kuhn–Tucker Condition in Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 171(1), pages 70-89, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zachary Feinstein & Birgit Rudloff, 2024. "Deep learning the efficient frontier of convex vector optimization problems," Journal of Global Optimization, Springer, vol. 90(2), pages 429-458, October.
    2. Zachary Feinstein & Birgit Rudloff, 2022. "Deep Learning the Efficient Frontier of Convex Vector Optimization Problems," Papers 2205.07077, arXiv.org, revised May 2024.
    3. P. Kesarwani & P. K. Shukla & J. Dutta & K. Deb, 2022. "Approximations for Pareto and Proper Pareto solutions and their KKT conditions," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 96(1), pages 123-148, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roberto Andreani & Ellen H. Fukuda & Gabriel Haeser & Daiana O. Santos & Leonardo D. Secchin, 2024. "Optimality Conditions for Nonlinear Second-Order Cone Programming and Symmetric Cone Programming," Journal of Optimization Theory and Applications, Springer, vol. 200(1), pages 1-33, January.
    2. Giorgio, 2019. "On Second-Order Optimality Conditions in Smooth Nonlinear Programming Problems," DEM Working Papers Series 171, University of Pavia, Department of Economics and Management.
    3. Gabriel Haeser & Alberto Ramos, 2020. "Constraint Qualifications for Karush–Kuhn–Tucker Conditions in Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 187(2), pages 469-487, November.
    4. Min Feng & Shengjie Li & Jie Wang, 2022. "On Tucker-Type Alternative Theorems and Necessary Optimality Conditions for Nonsmooth Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 195(2), pages 480-503, November.
    5. P. Kesarwani & P. K. Shukla & J. Dutta & K. Deb, 2022. "Approximations for Pareto and Proper Pareto solutions and their KKT conditions," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 96(1), pages 123-148, August.
    6. Giorgio Giorgi, 2018. "A Guided Tour in Constraint Qualifications for Nonlinear Programming under Differentiability Assumptions," DEM Working Papers Series 160, University of Pavia, Department of Economics and Management.
    7. Min Feng & Shengjie Li, 2018. "An approximate strong KKT condition for multiobjective optimization," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(3), pages 489-509, October.
    8. Marius Durea & Radu Strugariu, 2020. "On the sensitivity of Pareto efficiency in set-valued optimization problems," Journal of Global Optimization, Springer, vol. 78(3), pages 581-596, November.
    9. Javier Gomez & Cesar Alfaro & Felipe Ortega & Javier M. Moguerza & Maria Jesus Algar & Raul Moreno, 2024. "Adapting support vector optimisation algorithms to textual gender classification," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(3), pages 463-488, October.
    10. C. Gutiérrez & L. Huerga & B. Jiménez & V. Novo, 2020. "Optimality conditions for approximate proper solutions in multiobjective optimization with polyhedral cones," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 526-544, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:80:y:2021:i:1:d:10.1007_s10898-020-00971-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.