A Massive Data Framework for M-Estimators with Cubic-Rate
Author
Abstract
Suggested Citation
DOI: 10.1080/01621459.2017.1360779
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Fengrui Di & Lei Wang, 2022. "Multi-round smoothed composite quantile regression for distributed data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(5), pages 869-893, October.
- Zhang, Haixiang & Wang, HaiYing, 2021. "Distributed subdata selection for big data via sampling-based approach," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
- Xuejun Ma & Shaochen Wang & Wang Zhou, 2022. "Statistical inference in massive datasets by empirical likelihood," Computational Statistics, Springer, vol. 37(3), pages 1143-1164, July.
- Chen, Canyi & Xu, Wangli & Zhu, Liping, 2022. "Distributed estimation in heterogeneous reduced rank regression: With application to order determination in sufficient dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
- Shi, Jianwei & Qin, Guoyou & Zhu, Huichen & Zhu, Zhongyi, 2021. "Communication-efficient distributed M-estimation with missing data," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
- Lu Lin & Feng Li, 2023. "Global debiased DC estimations for biased estimators via pro forma regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de EstadÃstica e Investigación Operativa, vol. 32(2), pages 726-758, June.
- Zhao, Yan-Yong & Zhang, Yuchun & Liu, Yuan & Ismail, Noriszura, 2024. "Distributed debiased estimation of high-dimensional partially linear models with jumps," Computational Statistics & Data Analysis, Elsevier, vol. 191(C).
- Lulu Zuo & Haixiang Zhang & HaiYing Wang & Liuquan Sun, 2021. "Optimal subsample selection for massive logistic regression with distributed data," Computational Statistics, Springer, vol. 36(4), pages 2535-2562, December.
- Le-Yu Chen & Sokbae Lee, 2018. "High Dimensional Classification through $\ell_0$-Penalized Empirical Risk Minimization," Papers 1811.09540, arXiv.org.
- Tom Boot & Art=uras Juodis, 2023. "Uniform Inference in Linear Error-in-Variables Models: Divide-and-Conquer," Papers 2301.04439, arXiv.org.
- Ma, Xuejun & Wang, Shaochen & Zhou, Wang, 2021. "Testing multivariate quantile by empirical likelihood," Journal of Multivariate Analysis, Elsevier, vol. 182(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:113:y:2018:i:524:p:1698-1709. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.