IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v113y2018i521p306-314.html
   My bibliography  Save this article

Block-Diagonal Covariance Selection for High-Dimensional Gaussian Graphical Models

Author

Listed:
  • Emilie Devijver
  • Mélina Gallopin

Abstract

Gaussian graphical models are widely used to infer and visualize networks of dependencies between continuous variables. However, inferring the graph is difficult when the sample size is small compared to the number of variables. To reduce the number of parameters to estimate in the model, we propose a nonasymptotic model selection procedure supported by strong theoretical guarantees based on an oracle type inequality and a minimax lower bound. The covariance matrix of the model is approximated by a block-diagonal matrix. The structure of this matrix is detected by thresholding the sample covariance matrix, where the threshold is selected using the slope heuristic. Based on the block-diagonal structure of the covariance matrix, the estimation problem is divided into several independent problems: subsequently, the network of dependencies between variables is inferred using the graphical lasso algorithm in each block. The performance of the procedure is illustrated on simulated data. An application to a real gene expression dataset with a limited sample size is also presented: the dimension reduction allows attention to be objectively focused on interactions among smaller subsets of genes, leading to a more parsimonious and interpretable modular network. Supplementary materials for this article are available online.

Suggested Citation

  • Emilie Devijver & Mélina Gallopin, 2018. "Block-Diagonal Covariance Selection for High-Dimensional Gaussian Graphical Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(521), pages 306-314, January.
  • Handle: RePEc:taf:jnlasa:v:113:y:2018:i:521:p:306-314
    DOI: 10.1080/01621459.2016.1247002
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2016.1247002
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2016.1247002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shan Feng & Wenxian Xie & Yufeng Nie, 2024. "Simultaneous Bayesian Clustering and Model Selection with Mixture of Robust Factor Analyzers," Mathematics, MDPI, vol. 12(7), pages 1-23, April.
    2. Jiayu Lai & Xiaoyi Wang & Kaige Zhao & Shurong Zheng, 2023. "Block-diagonal test for high-dimensional covariance matrices," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 447-466, March.
    3. Filipiak, Katarzyna & Klein, Daniel & Mokrzycka, Monika, 2024. "Discrepancy between structured matrices in the power analysis of a separability test," Computational Statistics & Data Analysis, Elsevier, vol. 192(C).
    4. Zhu, Bo & Liu, Jiahao & Lin, Renda & Chevallier, Julien, 2021. "Cross-border systemic risk spillovers in the global oil system: Does the oil trade pattern matter?," Energy Economics, Elsevier, vol. 101(C).
    5. Bodnar, Taras & Dette, Holger & Parolya, Nestor, 2019. "Testing for independence of large dimensional vectors," MPRA Paper 97997, University Library of Munich, Germany, revised May 2019.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:113:y:2018:i:521:p:306-314. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.