IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v30y2021i3d10.1007_s11749-020-00745-9.html
   My bibliography  Save this article

A robust proposal of estimation for the sufficient dimension reduction problem

Author

Listed:
  • Andrea Bergesio

    (Universidad Nacional del Litoral)

  • María Eugenia Szretter Noste

    (Universidad de Buenos Aires)

  • Víctor J. Yohai

    (Universidad de Buenos Aires
    Universidad de Buenos Aires
    CONICET)

Abstract

In nonparametric regression contexts, when the number of covariables is large, we face the curse of dimensionality. One way to deal with this problem when the sample is not large enough is using a reduced number of linear combinations of the explanatory variables that contain most of the information about the response variable. This leads to the so-called sufficient reduction problem. The purpose of this paper is to obtain robust estimators of a sufficient dimension reduction, that is, estimators which are not very much affected by the presence of a small fraction of outliers in the data. One way to derive a sufficient dimension reduction is by means of the principal fitted components (PFC) model. We obtain robust estimations for the parameters of this model and the corresponding sufficient dimension reduction based on a $$\tau $$ τ -scale ( $$\tau $$ τ -estimators). Strong consistency of these estimators under weak assumptions of the underlying distribution is proven. The $$\tau $$ τ -estimators for the PFC model are computed using an iterative algorithm. A Monte Carlo study compares the performance of $$\tau $$ τ -estimators and maximum likelihood estimators. The results show clear advantages for $$\tau $$ τ -estimators in the presence of outlier contamination and only small loss of efficiency when outliers are absent. A proposal to select the dimension of the reduction space based on cross-validation is given. These estimators are implemented in R language through functions contained in the package tauPFC. As the PFC model is a special case of multivariate reduced-rank regression, our proposal can be applied directly to this model as well.

Suggested Citation

  • Andrea Bergesio & María Eugenia Szretter Noste & Víctor J. Yohai, 2021. "A robust proposal of estimation for the sufficient dimension reduction problem," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 758-783, September.
  • Handle: RePEc:spr:testjl:v:30:y:2021:i:3:d:10.1007_s11749-020-00745-9
    DOI: 10.1007/s11749-020-00745-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11749-020-00745-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11749-020-00745-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ben, Marta García & Martínez, Elena & Yohai, Víctor J., 2006. "Robust estimation for the multivariate linear model based on a [tau]-scale," Journal of Multivariate Analysis, Elsevier, vol. 97(7), pages 1600-1622, August.
    2. Szretter Noste, María Eugenia, 2019. "Using DAGs to identify the sufficient dimension reduction in the Principal Fitted Components model," Statistics & Probability Letters, Elsevier, vol. 145(C), pages 317-320.
    3. Y. She & K. Chen, 2017. "Robust reduced-rank regression," Biometrika, Biometrika Trust, vol. 104(3), pages 633-647.
    4. Efstathia Bura & Sabrina Duarte & Liliana Forzani, 2016. "Sufficient Reductions in Regressions With Exponential Family Inverse Predictors," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(515), pages 1313-1329, July.
    5. Adrover, Jorge G. & Donato, Stella M., 2015. "A robust predictive approach for canonical correlation analysis," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 356-376.
    6. Efstathia Bura & R. Dennis Cook, 2001. "Estimating the structural dimension of regressions via parametric inverse regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 393-410.
    7. Boente, Graciela & Fraiman, Ricardo, 1989. "Robust nonparametric regression estimation," Journal of Multivariate Analysis, Elsevier, vol. 29(2), pages 180-198, May.
    8. Scrucca, Luca, 2011. "Model-based SIR for dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 3010-3026, November.
    9. Bura, E. & Yang, J., 2011. "Dimension estimation in sufficient dimension reduction: A unifying approach," Journal of Multivariate Analysis, Elsevier, vol. 102(1), pages 130-142, January.
    10. Li, Bing & Wang, Shaoli, 2007. "On Directional Regression for Dimension Reduction," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 997-1008, September.
    11. Peter Filzmoser & Catherine Dehon & Christophe Croux, 2000. "Outlier resistant estimators for canonical correlation analysis," ULB Institutional Repository 2013/8460, ULB -- Universite Libre de Bruxelles.
    12. Bura, Efstathia & Cook, R. Dennis, 2003. "Rank estimation in reduced-rank regression," Journal of Multivariate Analysis, Elsevier, vol. 87(1), pages 159-176, October.
    13. Nora Muler & Victor J. Yohai, 2002. "Robust estimates for arch processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 23(3), pages 341-375, May.
    14. Izenman, Alan Julian, 1975. "Reduced-rank regression for the multivariate linear model," Journal of Multivariate Analysis, Elsevier, vol. 5(2), pages 248-264, June.
    15. Cook, R. Dennis & Ni, Liqiang, 2005. "Sufficient Dimension Reduction via Inverse Regression: A Minimum Discrepancy Approach," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 410-428, June.
    16. Zhou, Jianhui, 2009. "Robust dimension reduction based on canonical correlation," Journal of Multivariate Analysis, Elsevier, vol. 100(1), pages 195-209, January.
    17. Todorov, Valentin & Filzmoser, Peter, 2009. "An Object-Oriented Framework for Robust Multivariate Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 32(i03).
    18. Cook, R. Dennis & Forzani, Liliana M. & Tomassi, Diego R., 2011. "LDR: A Package for Likelihood-Based Sufficient Dimension Reduction," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 39(i03).
    19. Efstathia Bura & Liliana Forzani, 2015. "Sufficient Reductions in Regressions With Elliptically Contoured Inverse Predictors," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 420-434, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sabrina Duarte & Liliana Forzani & Pamela Llop & Rodrigo García Arancibia & Diego Tomassi, 2023. "Socioeconomic Index for Income and Poverty Prediction: A Sufficient Dimension Reduction Approach," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 69(2), pages 318-346, June.
    2. Szretter Noste, María Eugenia, 2019. "Using DAGs to identify the sufficient dimension reduction in the Principal Fitted Components model," Statistics & Probability Letters, Elsevier, vol. 145(C), pages 317-320.
    3. Barbarino, Alessandro & Bura, Efstathia, 2024. "Forecasting Near-equivalence of Linear Dimension Reduction Methods in Large Panels of Macro-variables," Econometrics and Statistics, Elsevier, vol. 31(C), pages 1-18.
    4. Forzani, Liliana & Rodriguez, Daniela & Smucler, Ezequiel & Sued, Mariela, 2019. "Sufficient dimension reduction and prediction in regression: Asymptotic results," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 339-349.
    5. Li, Junlan & Wang, Tao, 2021. "Dimension reduction in binary response regression: A joint modeling approach," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    6. Kapla, Daniel & Fertl, Lukas & Bura, Efstathia, 2022. "Fusing sufficient dimension reduction with neural networks," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    7. Forzani, Liliana & García Arancibia, Rodrigo & Llop, Pamela & Tomassi, Diego, 2018. "Supervised dimension reduction for ordinal predictors," Computational Statistics & Data Analysis, Elsevier, vol. 125(C), pages 136-155.
    8. Alessandro Barbarino & Efstathia Bura, 2017. "A Unified Framework for Dimension Reduction in Forecasting," Finance and Economics Discussion Series 2017-004, Board of Governors of the Federal Reserve System (U.S.).
    9. repec:jss:jstsof:39:i03 is not listed on IDEAS
    10. Chen, Canyi & Xu, Wangli & Zhu, Liping, 2022. "Distributed estimation in heterogeneous reduced rank regression: With application to order determination in sufficient dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    11. Hino, Hideitsu & Wakayama, Keigo & Murata, Noboru, 2013. "Entropy-based sliced inverse regression," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 105-114.
    12. Scrucca, Luca, 2011. "Model-based SIR for dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 3010-3026, November.
    13. Li‐Ping Zhu & Li‐Xing Zhu, 2009. "On distribution‐weighted partial least squares with diverging number of highly correlated predictors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 525-548, April.
    14. Lu Li & Kai Tan & Xuerong Meggie Wen & Zhou Yu, 2023. "Variable-dependent partial dimension reduction," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(2), pages 521-541, June.
    15. Dong, Yuexiao & Yu, Zhou & Zhu, Liping, 2015. "Robust inverse regression for dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 134(C), pages 71-81.
    16. Portier, François & Delyon, Bernard, 2013. "Optimal transformation: A new approach for covering the central subspace," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 84-107.
    17. François Portier, 2016. "An Empirical Process View of Inverse Regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(3), pages 827-844, September.
    18. Weng, Jiaying, 2022. "Fourier transform sparse inverse regression estimators for sufficient variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    19. Wang, Tao & Xu, Pei-Rong & Zhu, Li-Xing, 2012. "Non-convex penalized estimation in high-dimensional models with single-index structure," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 221-235.
    20. Kim, Kyongwon, 2022. "On principal graphical models with application to gene network," Computational Statistics & Data Analysis, Elsevier, vol. 166(C).
    21. Li, Lexin, 2009. "Exploiting predictor domain information in sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2665-2672, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:30:y:2021:i:3:d:10.1007_s11749-020-00745-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.