Using DAGs to identify the sufficient dimension reduction in the Principal Fitted Components model
Author
Abstract
Suggested Citation
DOI: 10.1016/j.spl.2018.08.008
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Efstathia Bura & Sabrina Duarte & Liliana Forzani, 2016. "Sufficient Reductions in Regressions With Exponential Family Inverse Predictors," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(515), pages 1313-1329, July.
- Cook, R. Dennis & Ni, Liqiang, 2005. "Sufficient Dimension Reduction via Inverse Regression: A Minimum Discrepancy Approach," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 410-428, June.
- Scrucca, Luca, 2011. "Model-based SIR for dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 3010-3026, November.
- Li, Bing & Wang, Shaoli, 2007. "On Directional Regression for Dimension Reduction," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 997-1008, September.
- Efstathia Bura & Liliana Forzani, 2015. "Sufficient Reductions in Regressions With Elliptically Contoured Inverse Predictors," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 420-434, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Andrea Bergesio & María Eugenia Szretter Noste & Víctor J. Yohai, 2021. "A robust proposal of estimation for the sufficient dimension reduction problem," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 758-783, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Andrea Bergesio & María Eugenia Szretter Noste & Víctor J. Yohai, 2021. "A robust proposal of estimation for the sufficient dimension reduction problem," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 758-783, September.
- Tianqing Liu & Danning Li & Fengjiao Ren & Jianguo Sun & Xiaohui Yuan, 2024. "A new sufficient dimension reduction method via rank divergence," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 33(3), pages 921-950, September.
- Sabrina Duarte & Liliana Forzani & Pamela Llop & Rodrigo García Arancibia & Diego Tomassi, 2023. "Socioeconomic Index for Income and Poverty Prediction: A Sufficient Dimension Reduction Approach," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 69(2), pages 318-346, June.
- Li, Junlan & Wang, Tao, 2021. "Dimension reduction in binary response regression: A joint modeling approach," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
- Hino, Hideitsu & Wakayama, Keigo & Murata, Noboru, 2013. "Entropy-based sliced inverse regression," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 105-114.
- Forzani, Liliana & García Arancibia, Rodrigo & Llop, Pamela & Tomassi, Diego, 2018. "Supervised dimension reduction for ordinal predictors," Computational Statistics & Data Analysis, Elsevier, vol. 125(C), pages 136-155.
- Kapla, Daniel & Fertl, Lukas & Bura, Efstathia, 2022. "Fusing sufficient dimension reduction with neural networks," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
- Alessandro Barbarino & Efstathia Bura, 2017. "A Unified Framework for Dimension Reduction in Forecasting," Finance and Economics Discussion Series 2017-004, Board of Governors of the Federal Reserve System (U.S.).
- Barbarino, Alessandro & Bura, Efstathia, 2024. "Forecasting Near-equivalence of Linear Dimension Reduction Methods in Large Panels of Macro-variables," Econometrics and Statistics, Elsevier, vol. 31(C), pages 1-18.
- Forzani, Liliana & Rodriguez, Daniela & Smucler, Ezequiel & Sued, Mariela, 2019. "Sufficient dimension reduction and prediction in regression: Asymptotic results," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 339-349.
- Zhang, Xin & Wang, Chong & Wu, Yichao, 2018. "Functional envelope for model-free sufficient dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 163(C), pages 37-50.
- Deng, Jianqiu & Yang, Xiaojie & Wang, Qihua, 2022. "Surrogate space based dimension reduction for nonignorable nonresponse," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
- Scrucca, Luca, 2011. "Model-based SIR for dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 3010-3026, November.
- Weng, Jiaying, 2022. "Fourier transform sparse inverse regression estimators for sufficient variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
- Wang, Tao & Xu, Pei-Rong & Zhu, Li-Xing, 2012. "Non-convex penalized estimation in high-dimensional models with single-index structure," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 221-235.
- Li, Lexin, 2009. "Exploiting predictor domain information in sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2665-2672, May.
- François Portier, 2016. "An Empirical Process View of Inverse Regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(3), pages 827-844, September.
- Li‐Ping Zhu & Li‐Xing Zhu, 2009. "On distribution‐weighted partial least squares with diverging number of highly correlated predictors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 525-548, April.
- repec:jss:jstsof:39:i03 is not listed on IDEAS
- Lian, Heng & Li, Gaorong, 2014. "Series expansion for functional sufficient dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 150-165.
- Kyongwon Kim, 2024. "A note on sufficient dimension reduction with post dimension reduction statistical inference," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 108(4), pages 733-753, December.
More about this item
Keywords
Sufficient dimension reduction; Directed acyclic graphs; Principal Fitted Components model; Conditional independence;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:145:y:2019:i:c:p:317-320. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.