IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v104y2017i3p633-647..html
   My bibliography  Save this article

Robust reduced-rank regression

Author

Listed:
  • Y. She
  • K. Chen

Abstract

SummaryIn high-dimensional multivariate regression problems, enforcing low rank in the coefficient matrix offers effective dimension reduction, which greatly facilitates parameter estimation and model interpretation. However, commonly used reduced-rank methods are sensitive to data corruption, as the low-rank dependence structure between response variables and predictors is easily distorted by outliers. We propose a robust reduced-rank regression approach for joint modelling and outlier detection. The problem is formulated as a regularized multivariate regression with a sparse mean-shift parameterization, which generalizes and unifies some popular robust multivariate methods. An efficient thresholding-based iterative procedure is developed for optimization. We show that the algorithm is guaranteed to converge and that the coordinatewise minimum point produced is statistically accurate under regularity conditions. Our theoretical investigations focus on non-asymptotic robust analysis, demonstrating that joint rank reduction and outlier detection leads to improved prediction accuracy. In particular, we show that redescending ψ-functions can essentially attain the minimax optimal error rate, and in some less challenging problems convex regularization guarantees the same low error rate. The performance of the proposed method is examined through simulation studies and real-data examples.

Suggested Citation

  • Y. She & K. Chen, 2017. "Robust reduced-rank regression," Biometrika, Biometrika Trust, vol. 104(3), pages 633-647.
  • Handle: RePEc:oup:biomet:v:104:y:2017:i:3:p:633-647.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asx032
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrea Bergesio & María Eugenia Szretter Noste & Víctor J. Yohai, 2021. "A robust proposal of estimation for the sufficient dimension reduction problem," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 758-783, September.
    2. Alexandre Belloni & Mingli Chen & Oscar Hernan Madrid Padilla & Zixuan & Wang, 2019. "High Dimensional Latent Panel Quantile Regression with an Application to Asset Pricing," Papers 1912.02151, arXiv.org, revised Aug 2022.
    3. Vilijandas Bagdonavičius & Linas Petkevičius, 2020. "A new multiple outliers identification method in linear regression," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(3), pages 275-296, April.
    4. Wan, Runzhe & Li, Yingying & Lu, Wenbin & Song, Rui, 2024. "Mining the factor zoo: Estimation of latent factor models with sufficient proxies," Journal of Econometrics, Elsevier, vol. 239(2).
    5. Elvezio Ronchetti, 2021. "The main contributions of robust statistics to statistical science and a new challenge," METRON, Springer;Sapienza Università di Roma, vol. 79(2), pages 127-135, August.
    6. Cui, Jingyu & Yi, Grace Y., 2024. "Variable selection in multivariate regression models with measurement error in covariates," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
    7. Mishra, Aditya & Müller, Christian L., 2022. "Robust regression with compositional covariates," Computational Statistics & Data Analysis, Elsevier, vol. 165(C).
    8. Luo, Chongliang & Liang, Jian & Li, Gen & Wang, Fei & Zhang, Changshui & Dey, Dipak K. & Chen, Kun, 2018. "Leveraging mixed and incomplete outcomes via reduced-rank modeling," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 378-394.
    9. Wang, Yibo & Karunamuni, Rohana J., 2022. "High-dimensional robust regression with Lq-loss functions," Computational Statistics & Data Analysis, Elsevier, vol. 176(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:104:y:2017:i:3:p:633-647.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.