IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v27y2018i1d10.1007_s11749-016-0514-2.html
   My bibliography  Save this article

On the estimation of the characteristic function in finite populations with applications

Author

Listed:
  • M. D. Jiménez-Gamero

    (Universidad de Sevilla)

  • J. L. Moreno-Rebollo

    (Universidad de Sevilla)

  • J. A. Mayor-Gallego

    (Universidad de Sevilla)

Abstract

This paper studies the estimation of the characteristic function of a finite population. Specifically, the weak convergence of the finite population empirical characteristic process is studied. Under suitable assumptions, it has the same limit as the empirical characteristic process for independent, identically distributed data from a random variable, up to a multiplicative constant depending on the sampling design. Applications of the obtained results for the two-sample problem, testing for independence and testing for symmetry are given.

Suggested Citation

  • M. D. Jiménez-Gamero & J. L. Moreno-Rebollo & J. A. Mayor-Gallego, 2018. "On the estimation of the characteristic function in finite populations with applications," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(1), pages 95-121, March.
  • Handle: RePEc:spr:testjl:v:27:y:2018:i:1:d:10.1007_s11749-016-0514-2
    DOI: 10.1007/s11749-016-0514-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11749-016-0514-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11749-016-0514-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiménez-Gamero, M.D. & Alba-Fernández, V. & Muñoz-García, J. & Chalco-Cano, Y., 2009. "Goodness-of-fit tests based on empirical characteristic functions," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 3957-3971, October.
    2. Neuhaus, Georg & Zhu, Li-Xing, 1998. "Permutation Tests for Reflected Symmetry," Journal of Multivariate Analysis, Elsevier, vol. 67(2), pages 129-153, November.
    3. Henze, N. & Klar, B. & Zhu, L. X., 2005. "Checking the adequacy of the multivariate semiparametric location shift model," Journal of Multivariate Analysis, Elsevier, vol. 93(2), pages 238-256, April.
    4. Meintanis, Simos G. & Iliopoulos, George, 2008. "Fourier methods for testing multivariate independence," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 1884-1895, January.
    5. Henze, N. & Klar, B. & Meintanis, S. G., 2003. "Invariant tests for symmetry about an unspecified point based on the empirical characteristic function," Journal of Multivariate Analysis, Elsevier, vol. 87(2), pages 275-297, November.
    6. Pier Luigi Conti & Daniela Marella, 2015. "Inference for Quantiles of a Finite Population: Asymptotic versus Resampling Results," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(2), pages 545-561, June.
    7. Wang, Jianqiang C., 2012. "Sample distribution function based goodness-of-fit test for complex surveys," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 664-679.
    8. Anderson, N. H. & Hall, P. & Titterington, D. M., 1994. "Two-Sample Test Statistics for Measuring Discrepancies Between Two Multivariate Probability Density Functions Using Kernel-Based Density Estimates," Journal of Multivariate Analysis, Elsevier, vol. 50(1), pages 41-54, July.
    9. Xiao, Yuanhui, 2017. "A fast algorithm for two-dimensional Kolmogorov–Smirnov two sample tests," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 53-58.
    10. Hlávka, Zdenek & Husková, Marie & Meintanis, Simos G., 2011. "Tests for independence in non-parametric heteroscedastic regression models," Journal of Multivariate Analysis, Elsevier, vol. 102(4), pages 816-827, April.
    11. Marie Hušková & Simos Meintanis, 2008. "Tests for the multivariate -sample problem based on the empirical characteristic function," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 20(3), pages 263-277.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniela Marella & Paola Vicard, 2022. "Bayesian network structural learning from complex survey data: a resampling based approach," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(4), pages 981-1013, October.
    2. S. G. Meintanis & M. Hušková & M. D. Jiménez-Gamero, 2018. "Editorial," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(1), pages 1-2, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Feifei & Meintanis, Simos G. & Zhu, Lixing, 2019. "On some characterizations and multidimensional criteria for testing homogeneity, symmetry and independence," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 125-144.
    2. M. Jiménez Gamero, 2014. "On the empirical characteristic function process of the residuals in GARCH models and applications," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 409-432, June.
    3. Meintanis, Simos G. & Ushakov, Nikolai G., 2016. "Nonparametric probability weighted empirical characteristic function and applications," Statistics & Probability Letters, Elsevier, vol. 108(C), pages 52-61.
    4. L. Baringhaus & D. Kolbe, 2015. "Two-sample tests based on empirical Hankel transforms," Statistical Papers, Springer, vol. 56(3), pages 597-617, August.
    5. Chen, Feifei & Jiménez–Gamero, M. Dolores & Meintanis, Simos & Zhu, Lixing, 2022. "A general Monte Carlo method for multivariate goodness–of–fit testing applied to elliptical families," Computational Statistics & Data Analysis, Elsevier, vol. 175(C).
    6. L. Baringhaus & B. Ebner & N. Henze, 2017. "The limit distribution of weighted $$L^2$$ L 2 -goodness-of-fit statistics under fixed alternatives, with applications," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(5), pages 969-995, October.
    7. M. D. Jiménez-Gamero & M. Cousido-Rocha & M. V. Alba-Fernández & F. Jiménez-Jiménez, 2022. "Testing the equality of a large number of populations," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(1), pages 1-21, March.
    8. Meintanis, Simos G. & Hušková, Marie & Hlávka, Zdeněk, 2022. "Fourier-type tests of mutual independence between functional time series," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    9. Zdeněk Hlávka & Marie Hušková & Simos G. Meintanis, 2020. "Change-point methods for multivariate time-series: paired vectorial observations," Statistical Papers, Springer, vol. 61(4), pages 1351-1383, August.
    10. Rainer Dyckerhoff & Christophe Ley & Davy Paindaveine, 2014. "Depth-Based Runs Tests for bivariate Central Symmetry," Working Papers ECARES ECARES 2014-03, ULB -- Universite Libre de Bruxelles.
    11. Norbert Henze & Celeste Mayer, 2020. "More good news on the HKM test for multivariate reflected symmetry about an unknown centre," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(3), pages 741-770, June.
    12. Dai, Xinjie & Niu, Cuizhen & Guo, Xu, 2018. "Testing for central symmetry and inference of the unknown center," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 15-31.
    13. Rainer Dyckerhoff & Christophe Ley & Davy Paindaveine, 2015. "Depth-based runs tests for bivariate central symmetry," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(5), pages 917-941, October.
    14. Juan Carlos Pardo-Fernández & María Dolores Jiménez-Gamero & Anouar El Ghouch, 2015. "A Non-parametric ANOVA-type Test for Regression Curves Based on Characteristic Functions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(1), pages 197-213, March.
    15. Sangyeol Lee & Simos G. Meintanis & Minyoung Jo, 2019. "Inferential procedures based on the integrated empirical characteristic function," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(3), pages 357-386, September.
    16. Ansgar Steland, 2016. "Asymptotics for random functions moderated by dependent noise," Statistical Inference for Stochastic Processes, Springer, vol. 19(3), pages 363-387, October.
    17. James S. Allison & Charl Pretorius, 2017. "A Monte Carlo evaluation of the performance of two new tests for symmetry," Computational Statistics, Springer, vol. 32(4), pages 1323-1338, December.
    18. Cécile Durot & Piet Groeneboom & Hendrik P. Lopuhaä, 2013. "Testing equality of functions under monotonicity constraints," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 25(4), pages 939-970, December.
    19. Tarik Bahraoui & Nikolai Kolev, 2021. "New Measure of the Bivariate Asymmetry," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 421-448, February.
    20. Jiménez-Gamero, M.D. & Alba-Fernández, V. & Muñoz-García, J. & Chalco-Cano, Y., 2009. "Goodness-of-fit tests based on empirical characteristic functions," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 3957-3971, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:27:y:2018:i:1:d:10.1007_s11749-016-0514-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.