IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v31y2022i4d10.1007_s10260-021-00618-x.html
   My bibliography  Save this article

Bayesian network structural learning from complex survey data: a resampling based approach

Author

Listed:
  • Daniela Marella

    (Sapienza Università di Roma)

  • Paola Vicard

    (Università Roma Tre)

Abstract

Nowadays there is increasing availability of good quality official statistics data. The construction of multivariate statistical models possibly leading to the identification of causal relationships is of interest. In this context Bayesian networks play an important role. A crucial step consists in learning the structure of a Bayesian network. One of the most widely used procedures is the PC algorithm consisting in carrying out several independence tests on the available data set and in building a Bayesian network according to the tests results. The PC algorithm is based on the irremissible assumption that data are independent and identically distributed. Unfortunately, official statistics data are generally collected through complex sampling designs, then the aforementioned assumption is not met. In such a context the PC algorithm fails in learning the structure. To avoid this, the sample selection must be taken into account in the structural learning process. In this paper, a modified version of the PC algorithm is proposed for inferring causal structure from complex survey data. It is based on resampling techniques for finite populations. A simulation experiment showing the robustness with respect to departures from the assumptions and the good performance of the proposed algorithm is carried out.

Suggested Citation

  • Daniela Marella & Paola Vicard, 2022. "Bayesian network structural learning from complex survey data: a resampling based approach," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(4), pages 981-1013, October.
  • Handle: RePEc:spr:stmapp:v:31:y:2022:i:4:d:10.1007_s10260-021-00618-x
    DOI: 10.1007/s10260-021-00618-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10260-021-00618-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10260-021-00618-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Antal, Erika & Tillé, Yves, 2011. "A Direct Bootstrap Method for Complex Sampling Designs From a Finite Population," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 534-543.
    2. Marco Di Zio & Mauro Scanu & Lucia Coppola & Orietta Luzi & Alessandra Ponti, 2004. "Bayesian networks for imputation," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 167(2), pages 309-322, May.
    3. Arindam Chatterjee, 2011. "Asymptotic properties of sample quantiles from a finite population," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(1), pages 157-179, February.
    4. Lagani, Vincenzo & Athineou, Giorgos & Farcomeni, Alessio & Tsagris, Michail & Tsamardinos, Ioannis, 2017. "Feature Selection with the R Package MXM: Discovering Statistically Equivalent Feature Subsets," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 80(i07).
    5. M. D. Jiménez-Gamero & J. L. Moreno-Rebollo & J. A. Mayor-Gallego, 2018. "On the estimation of the characteristic function in finite populations with applications," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(1), pages 95-121, March.
    6. Pier Luigi Conti & Daniela Marella, 2015. "Inference for Quantiles of a Finite Population: Asymptotic versus Resampling Results," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(2), pages 545-561, June.
    7. Kalisch, Markus & Mächler, Martin & Colombo, Diego & Maathuis, Marloes H. & Bühlmann, Peter, 2012. "Causal Inference Using Graphical Models with the R Package pcalg," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 47(i11).
    8. Jean‐François Beaumont & Zdenek Patak, 2012. "On the Generalized Bootstrap for Sample Surveys with Special Attention to Poisson Sampling," International Statistical Review, International Statistical Institute, vol. 80(1), pages 127-148, April.
    9. Pier Luigi Conti & Alberto Iorio & Alessio Guandalini & Daniela Marella & Paola Vicard & Vincenzina Vitale, 2020. "On the estimation of the Lorenz curve under complex sampling designs," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(1), pages 1-24, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pier Luigi Conti & Fulvia Mecatti, 2022. "Resampling under Complex Sampling Designs: Roots, Development and the Way Forward," Stats, MDPI, vol. 5(1), pages 1-12, March.
    2. Daniela Marella, 2018. "Pc Complex: Pc Algorithm For Complex Survey Data," Departmental Working Papers of Economics - University 'Roma Tre' 0240, Department of Economics - University Roma Tre.
    3. Wayne A. Fuller & Jason C. Legg & Yang Li, 2017. "Bootstrap Variance Estimation for Rejective Sampling," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1562-1570, October.
    4. Pier Luigi Conti & Alberto Iorio & Alessio Guandalini & Daniela Marella & Paola Vicard & Vincenzina Vitale, 2020. "On the estimation of the Lorenz curve under complex sampling designs," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(1), pages 1-24, March.
    5. Zhonglei Wang & Liuhua Peng & Jae Kwang Kim, 2022. "Bootstrap inference for the finite population mean under complex sampling designs," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1150-1174, September.
    6. Sixia Chen & David Haziza & Zeinab Mashreghi, 2022. "A Comparison of Existing Bootstrap Algorithms for Multi-Stage Sampling Designs," Stats, MDPI, vol. 5(2), pages 1-17, June.
    7. Żądło Tomasz, 2021. "On the generalisation of Quatember’s bootstrap," Statistics in Transition New Series, Statistics Poland, vol. 22(1), pages 163-178, March.
    8. Marius Stefan & Michael A. Hidiroglou, 2023. "A Bootstrap Variance Procedure for the Generalised Regression Estimator," International Statistical Review, International Statistical Institute, vol. 91(2), pages 294-317, August.
    9. Pier Luigi Conti & Daniela Marella, 2015. "Inference for Quantiles of a Finite Population: Asymptotic versus Resampling Results," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(2), pages 545-561, June.
    10. Tomasz Żądło, 2021. "On the generalisation of Quatember's bootstrap," Statistics in Transition New Series, Polish Statistical Association, vol. 22(1), pages 163-178, March.
    11. Rosa Aghdam & Mojtaba Ganjali & Parisa Niloofar & Changiz Eslahchi, 2016. "Inferring gene regulatory networks by an order independent algorithm using incomplete data sets," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(5), pages 893-913, April.
    12. Omer Ozturk & Narayanaswamy Balakrishnan & Olena Kravchuk, 2023. "Order Statistics Based on a Combined Simple Random Sample from a Finite Population and Applications to Inference," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 77-101, February.
    13. Epskamp, Sacha & Cramer, Angélique O.J. & Waldorp, Lourens J. & Schmittmann, Verena D. & Borsboom, Denny, 2012. "qgraph: Network Visualizations of Relationships in Psychometric Data," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i04).
    14. Bettendorf, Timo & Heinlein, Reinhold, 2019. "Connectedness between G10 currencies: Searching for the causal structure," Discussion Papers 06/2019, Deutsche Bundesbank.
    15. Andrius Čiginas, 2014. "On the asymptotic normality of finite population $$L$$ L -statistics," Statistical Papers, Springer, vol. 55(4), pages 1047-1058, November.
    16. Bouncken, Ricarda B. & Ratzmann, Martin & Kraus, Sascha, 2021. "Anti-aging: How innovation is shaped by firm age and mutual knowledge creation in an alliance," Journal of Business Research, Elsevier, vol. 137(C), pages 422-429.
    17. M. D. Jiménez-Gamero & J. L. Moreno-Rebollo & J. A. Mayor-Gallego, 2018. "On the estimation of the characteristic function in finite populations with applications," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(1), pages 95-121, March.
    18. Leonard Henckel & Emilija Perković & Marloes H. Maathuis, 2022. "Graphical criteria for efficient total effect estimation via adjustment in causal linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 579-599, April.
    19. Peter Bühlmann, 2013. "Causal statistical inference in high dimensions," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 77(3), pages 357-370, June.
    20. Aviral Kumar Tiwari & Micheal Kofi Boachie & Rangan Gupta, 2021. "Network Analysis of Economic and Financial Uncertainties in Advanced Economies: Evidence from Graph-Theory," Advances in Decision Sciences, Asia University, Taiwan, vol. 25(1), pages 188-215, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:31:y:2022:i:4:d:10.1007_s10260-021-00618-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.