IDEAS home Printed from https://ideas.repec.org/p/tse/wpaper/31687.html
   My bibliography  Save this paper

Honest confidence sets in nonparametric IV regression and other ill-posed models

Author

Listed:
  • Babii, Andrii

Abstract

This paper provides novel methods for inference in a very general class of ill-posed models in econometrics, encompassing the nonparametric instrumental regression, different functional regressions, and the deconvolution. I focus on uniform confidence sets for the parameter of interest estimated with Tikhonov regularization, as in Darolles, Fan, Florens, and Renault (2011). I first show that it is not possible to develop inferential methods directly based on the uniform central limit theorem. To circumvent this difficulty I develop two approaches that lead to valid confidence sets. I characterize expected diameters and coverage properties uniformly over a large class of models (i.e. constructed confidence sets are honest). Finally, I illustrate that introduced confidence sets have reasonable width and coverage properties in samples commonly used in applications with Monte Carlo simulations and considering application to Engel curves.

Suggested Citation

  • Babii, Andrii, 2017. "Honest confidence sets in nonparametric IV regression and other ill-posed models," TSE Working Papers 17-803, Toulouse School of Economics (TSE).
  • Handle: RePEc:tse:wpaper:31687
    as

    Download full text from publisher

    File URL: https://www.tse-fr.eu/sites/default/files/TSE/documents/doc/wp/2017/wp_tse_803.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Frédérique Fève & Jean-Pierre Florens, 2010. "The practice of non-parametric estimation by solving inverse problems: the example of transformation models," Econometrics Journal, Royal Economic Society, vol. 13(3), pages 1-27, October.
    2. Xiaohong Chen & Demian Pouzo, 2015. "Sieve Wald and QLR Inferences on Semi/Nonparametric Conditional Moment Models," Econometrica, Econometric Society, vol. 83(3), pages 1013-1079, May.
    3. Ingvild Almas, 2012. "International Income Inequality: Measuring PPP Bias by Estimating Engel Curves for Food," American Economic Review, American Economic Association, vol. 102(2), pages 1093-1117, April.
    4. S. Darolles & Y. Fan & J. P. Florens & E. Renault, 2011. "Nonparametric Instrumental Regression," Econometrica, Econometric Society, vol. 79(5), pages 1541-1565, September.
    5. Hervé Cardot & Frédéric Ferraty & André Mas & Pascal Sarda, 2003. "Testing Hypotheses in the Functional Linear Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 30(1), pages 241-255, March.
    6. Horowitz, Joel L. & Lee, Sokbae, 2012. "Uniform confidence bands for functions estimated nonparametrically with instrumental variables," Journal of Econometrics, Elsevier, vol. 168(2), pages 175-188.
    7. Chernozhukov, Victor & Chetverikov, Denis & Kato, Kengo, 2016. "Empirical and multiplier bootstraps for suprema of empirical processes of increasing complexity, and related Gaussian couplings," Stochastic Processes and their Applications, Elsevier, vol. 126(12), pages 3632-3651.
    8. Benatia, David & Carrasco, Marine & Florens, Jean-Pierre, 2017. "Functional linear regression with functional response," Journal of Econometrics, Elsevier, vol. 201(2), pages 269-291.
    9. Florens, Jean-Pierre & Johannes, Jan & Van Bellegem, Sébastien, 2011. "Identification And Estimation By Penalization In Nonparametric Instrumental Regression," Econometric Theory, Cambridge University Press, vol. 27(3), pages 472-496, June.
    10. Emi Nakamura & Jón Steinsson & Miao Liu, 2016. "Are Chinese Growth and Inflation Too Smooth? Evidence from Engel Curves," American Economic Journal: Macroeconomics, American Economic Association, vol. 8(3), pages 113-144, July.
    11. Richard Blundell & Xiaohong Chen & Dennis Kristensen, 2007. "Semi-Nonparametric IV Estimation of Shape-Invariant Engel Curves," Econometrica, Econometric Society, vol. 75(6), pages 1613-1669, November.
    12. Stinchcombe, Maxwell B. & White, Halbert, 1998. "Consistent Specification Testing With Nuisance Parameters Present Only Under The Alternative," Econometric Theory, Cambridge University Press, vol. 14(3), pages 295-325, June.
    13. Stéphane Bonhomme & Jean-Marc Robin, 2010. "Generalized Non-Parametric Deconvolution with an Application to Earnings Dynamics," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 77(2), pages 491-533.
    14. Xiaohong Chen & Demian Pouzo, 2012. "Estimation of Nonparametric Conditional Moment Models With Possibly Nonsmooth Generalized Residuals," Econometrica, Econometric Society, vol. 80(1), pages 277-321, January.
    15. Jean-Pierre FLORENS & Joel L. HOROWITZ & Ingrid VAN KEILEGOM, 2017. "Bias-Corrected Confidence Intervals in a Class of Linear Inverse Problems," Annals of Economics and Statistics, GENES, issue 128, pages 203-228.
    16. Ivan A. Canay & Andres Santos & Azeem M. Shaikh, 2013. "On the Testability of Identification in Some Nonparametric Models With Endogeneity," Econometrica, Econometric Society, vol. 81(6), pages 2535-2559, November.
    17. Belloni, Alexandre & Chernozhukov, Victor & Chetverikov, Denis & Kato, Kengo, 2015. "Some new asymptotic theory for least squares series: Pointwise and uniform results," Journal of Econometrics, Elsevier, vol. 186(2), pages 345-366.
    18. Andrii Babii & Jean-Pierre Florens, 2017. "Is completeness necessary? Estimation in nonidentified linear models," Papers 1709.03473, arXiv.org, revised Jan 2025.
    19. Florens, Jean-Pierre & Horowitz, Joel & Van Keilegom, Ingrid, 2016. "Bias-corrected condence intervals in a class of linear inverse problems," LIDAM Discussion Papers ISBA 2016021, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    20. Eric Gautier & Yuichi Kitamura, 2013. "Nonparametric Estimation in Random Coefficients Binary Choice Models," Econometrica, Econometric Society, vol. 81(2), pages 581-607, March.
    21. Xiaohong Chen & Timothy Christensen, 2013. "Optimal Sup-norm Rates, Adaptivity and Inference in Nonparametric Instrumental Variables Estimation," Cowles Foundation Discussion Papers 1923R, Cowles Foundation for Research in Economics, Yale University, revised Apr 2015.
    22. Karun Adusumilli & Taisuke Otsu, 2015. "Nonparametric instrumental regression with errors in variables," STICERD - Econometrics Paper Series /2015/585, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    23. Florens, Jean-Pierre & Johannes, Jan & Van Bellegem, Sebastien, 2011. "Identification and estimation by penalization in Nonparametric Instrumental Regression," LIDAM Reprints ISBA 2011046, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    24. Carrasco, Marine & Florens, Jean-Pierre & Renault, Eric, 2007. "Linear Inverse Problems in Structural Econometrics Estimation Based on Spectral Decomposition and Regularization," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 77, Elsevier.
    25. Donald W. K. Andrews & Gustavo Soares, 2010. "Inference for Parameters Defined by Moment Inequalities Using Generalized Moment Selection," Econometrica, Econometric Society, vol. 78(1), pages 119-157, January.
    26. Yatchew,Adonis, 2003. "Semiparametric Regression for the Applied Econometrician," Cambridge Books, Cambridge University Press, number 9780521812832, January.
    27. Andres Santos, 2012. "Inference in Nonparametric Instrumental Variables With Partial Identification," Econometrica, Econometric Society, vol. 80(1), pages 213-275, January.
    28. Carrasco, Marine & Florens, Jean-Pierre, 2011. "A Spectral Method For Deconvolving A Density," Econometric Theory, Cambridge University Press, vol. 27(3), pages 546-581, June.
    29. James Banks & Richard Blundell & Arthur Lewbel, 1997. "Quadratic Engel Curves And Consumer Demand," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 527-539, November.
    30. Gagliardini, Patrick & Scaillet, Olivier, 2012. "Tikhonov regularization for nonparametric instrumental variable estimators," Journal of Econometrics, Elsevier, vol. 167(1), pages 61-75.
    31. Comte, Fabienne & Johannes, Jan, 2012. "Adaptive functional linear regression," LIDAM Reprints ISBA 2012031, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    32. Kato, Kengo & Sasaki, Yuya, 2018. "Uniform confidence bands in deconvolution with unknown error distribution," Journal of Econometrics, Elsevier, vol. 207(1), pages 129-161.
    33. Florens, Jean-Pierre & Van Bellegem, Sébastien, 2015. "Instrumental variable estimation in functional linear models," Journal of Econometrics, Elsevier, vol. 186(2), pages 465-476.
    34. Whitney K. Newey & James L. Powell, 2003. "Instrumental Variable Estimation of Nonparametric Models," Econometrica, Econometric Society, vol. 71(5), pages 1565-1578, September.
    35. Horowitz, Joel L., 2014. "Adaptive nonparametric instrumental variables estimation: Empirical choice of the regularization parameter," Journal of Econometrics, Elsevier, vol. 180(2), pages 158-173.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Babii, Andrii & Florens, Jean-Pierre, 2017. "Are unobservables separable?," TSE Working Papers 17-802, Toulouse School of Economics (TSE).
    2. Andrii Babii, 2022. "High-Dimensional Mixed-Frequency IV Regression," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(4), pages 1470-1483, October.
    3. Enache, Andreea & Florens, Jean-Pierre & Sbai, Erwann, 2023. "A functional estimation approach to the first-price auction models," Journal of Econometrics, Elsevier, vol. 235(2), pages 1564-1588.
    4. Kengo Kato & Yuya Sasaki & Takuya Ura, 2018. "Inference based on Kotlarski's Identity," Papers 1808.09375, arXiv.org, revised Sep 2019.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Centorrino Samuele & Feve Frederique & Florens Jean-Pierre, 2017. "Additive Nonparametric Instrumental Regressions: A Guide to Implementation," Journal of Econometric Methods, De Gruyter, vol. 6(1), pages 1-25, January.
    2. Andrii Babii & Jean-Pierre Florens, 2017. "Are Unobservables Separable?," Papers 1705.01654, arXiv.org, revised Mar 2021.
    3. Centorrino, Samuele & Florens, Jean-Pierre, 2021. "Nonparametric Instrumental Variable Estimation of Binary Response Models with Continuous Endogenous Regressors," Econometrics and Statistics, Elsevier, vol. 17(C), pages 35-63.
    4. Joel L. Horowitz, 2013. "Ill-posed inverse problems in economics," CeMMAP working papers CWP37/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    5. Joel L. Horowitz, 2013. "Ill-posed inverse problems in economics," CeMMAP working papers 37/13, Institute for Fiscal Studies.
    6. Xiaohong Chen & Timothy Christensen, 2013. "Optimal Sup-norm Rates, Adaptivity and Inference in Nonparametric Instrumental Variables Estimation," Cowles Foundation Discussion Papers 1923R, Cowles Foundation for Research in Economics, Yale University, revised Apr 2015.
    7. Jad Beyhum & Elia Lapenta & Pascal Lavergne, 2023. "One-step smoothing splines instrumental regression," Papers 2307.14867, arXiv.org, revised Dec 2024.
    8. Andrii Babii & Jean-Pierre Florens, 2017. "Is completeness necessary? Estimation in nonidentified linear models," Papers 1709.03473, arXiv.org, revised Jan 2025.
    9. Zheng Fang & Juwon Seo, 2019. "A Projection Framework for Testing Shape Restrictions That Form Convex Cones," Papers 1910.07689, arXiv.org, revised Sep 2021.
    10. Xiaohong Chen & Timothy M. Christensen, 2015. "Optimal sup-norm rates, adaptivity and inference in nonparametric instrumental variables estimation," CeMMAP working papers 32/15, Institute for Fiscal Studies.
    11. Beyhum, Jad & Lapenta, Elia & Lavergne, Pascal, 2023. "One-step nonparametric instrumental regression using smoothing splines," TSE Working Papers 23-1467, Toulouse School of Economics (TSE).
    12. Asin, Nicolas & Johannes, Jan, 2016. "Adaptive non-parametric instrumental regression in the presence of dependence," LIDAM Discussion Papers ISBA 2016015, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    13. Andrew Bennett & Nathan Kallus & Xiaojie Mao & Whitney Newey & Vasilis Syrgkanis & Masatoshi Uehara, 2022. "Inference on Strongly Identified Functionals of Weakly Identified Functions," Papers 2208.08291, arXiv.org, revised Jun 2023.
    14. Florens, Jean-Pierre & Simoni, Anna, 2012. "Nonparametric estimation of an instrumental regression: A quasi-Bayesian approach based on regularized posterior," Journal of Econometrics, Elsevier, vol. 170(2), pages 458-475.
    15. Xiaohong Chen & Demian Pouzo, 2015. "Sieve Wald and QLR Inferences on Semi/Nonparametric Conditional Moment Models," Econometrica, Econometric Society, vol. 83(3), pages 1013-1079, May.
    16. Victor Chernozhukov & Whitney K. Newey & Andres Santos, 2023. "Constrained Conditional Moment Restriction Models," Econometrica, Econometric Society, vol. 91(2), pages 709-736, March.
    17. Escanciano, Juan Carlos & Li, Wei, 2021. "Optimal Linear Instrumental Variables Approximations," Journal of Econometrics, Elsevier, vol. 221(1), pages 223-246.
    18. Breunig, Christoph & Mammen, Enno & Simoni, Anna, 2018. "Nonparametric estimation in case of endogenous selection," Journal of Econometrics, Elsevier, vol. 202(2), pages 268-285.
    19. Yu Zhu, 2020. "Inference in nonparametric/semiparametric moment equality models with shape restrictions," Quantitative Economics, Econometric Society, vol. 11(2), pages 609-636, May.
    20. Florens, Jean-Pierre & Simoni, Anna, 2016. "Regularizing Priors For Linear Inverse Problems," Econometric Theory, Cambridge University Press, vol. 32(1), pages 71-121, February.

    More about this item

    Keywords

    nonparametric instrumental regression; functional linear regression; density deconvolution; honest uniform confidence sets; non-asymptotic inference; ill-posed models; Tikhonov regularization;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tse:wpaper:31687. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/tsetofr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.