IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v42y2015i2p336-360.html
   My bibliography  Save this article

Adaptive Warped Kernel Estimators

Author

Listed:
  • Gaëlle Chagny

Abstract

type="main" xml:id="sjos12109-abs-0001"> In this work, we develop a method of adaptive non-parametric estimation, based on ‘warped’ kernels. The aim is to estimate a real-valued function s from a sample of random couples (X,Y). We deal with transformed data (Φ(X),Y), with Φ a one-to-one function, to build a collection of kernel estimators. The data-driven bandwidth selection is performed with a method inspired by Goldenshluger and Lepski (Ann. Statist., 39, 2011, 1608). The method permits to handle various problems such as additive and multiplicative regression, conditional density estimation, hazard rate estimation based on randomly right-censored data, and cumulative distribution function estimation from current-status data. The interest is threefold. First, the squared-bias/variance trade-off is automatically realized. Next, non-asymptotic risk bounds are derived. Lastly, the estimator is easily computed, thanks to its simple expression: a short simulation study is presented.

Suggested Citation

  • Gaëlle Chagny, 2015. "Adaptive Warped Kernel Estimators," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(2), pages 336-360, June.
  • Handle: RePEc:bla:scjsta:v:42:y:2015:i:2:p:336-360
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/sjos.12109
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lacour, Claire, 2008. "Nonparametric estimation of the stationary density and the transition density of a Markov chain," Stochastic Processes and their Applications, Elsevier, vol. 118(2), pages 232-260, February.
    2. Shuangge Ma & Michael Kosorok, 2006. "Adaptive penalized M-estimation with current status data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 58(3), pages 511-526, September.
    3. Laure Sansonnet, 2014. "Wavelet Thresholding Estimation in a Poissonian Interactions Model with Application to Genomic Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(1), pages 200-226, March.
    4. K. Mehra & Y. Ramakrishnaiah & P. Sashikala, 2000. "Laws of Iterated Logarithm and Related Asymptotics for Estimators of Conditional Density and Mode," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 52(4), pages 630-645, December.
    5. Christophe Chesneau, 2007. "A maxiset approach of a Gaussian noise model," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(3), pages 523-546, December.
    6. Lacour, Claire, 2008. "Adaptive estimation of the transition density of a particular hidden Markov chain," Journal of Multivariate Analysis, Elsevier, vol. 99(5), pages 787-814, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guilloux, Agathe & Lemler, Sarah & Taupin, Marie-Luce, 2016. "Adaptive kernel estimation of the baseline function in the Cox model with high-dimensional covariates," Journal of Multivariate Analysis, Elsevier, vol. 148(C), pages 141-159.
    2. Gautier, Eric & Gaillac, Christophe, 2019. "Estimates for the SVD of the Truncated Fourier Transform on L2(cosh(b.)) and Stable Analytic Continuation," TSE Working Papers 19-1013, Toulouse School of Economics (TSE).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gautier, Eric & Gaillac, Christophe, 2019. "Adaptive estimation in the linear random coefficients model when regressors have limited variation," TSE Working Papers 19-1026, Toulouse School of Economics (TSE).
    2. Gaëlle Chagny & Claire Lacour, 2015. "Optimal adaptive estimation of the relative density," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 605-631, September.
    3. Sandra Plancade, 2011. "Model selection for hazard rate estimation in presence of censoring," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 74(3), pages 313-347, November.
    4. Salima El Kolei & Fabien Navarro, 2022. "Contrast estimation for noisy observations of diffusion processes via closed-form density expansions," Statistical Inference for Stochastic Processes, Springer, vol. 25(2), pages 303-336, July.
    5. Han-Ying Liang & Jacobo Uña-Álvarez, 2010. "Asymptotic normality for estimator of conditional mode under left-truncated and dependent observations," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 72(1), pages 1-19, July.
    6. Jessica G. Young & Nicholas P. Jewell & Steven J. Samuels, 2008. "Regression Analysis of a Disease Onset Distribution Using Diagnosis Data," Biometrics, The International Biometric Society, vol. 64(1), pages 20-28, March.
    7. Comte, F. & Lacour, C. & Rozenholc, Y., 2010. "Adaptive estimation of the dynamics of a discrete time stochastic volatility model," Journal of Econometrics, Elsevier, vol. 154(1), pages 59-73, January.
    8. Martínez-Ovando Juan Carlos & Walker Stephen G., 2011. "Time-series Modelling, Stationarity and Bayesian Nonparametric Methods," Working Papers 2011-08, Banco de México.
    9. Cheng, Guang & Kosorok, Michael R., 2009. "The penalized profile sampler," Journal of Multivariate Analysis, Elsevier, vol. 100(3), pages 345-362, March.
    10. Fabienne Comte & Gwennaelle Mabon & Adeline Samson, 2017. "Spline regression for hazard rate estimation when data are censored and measured with error," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 71(2), pages 115-140, May.
    11. Pierre Alquier & Olivier Wintenberg, 2010. "Model Selection for Weakly Dependent Time Series Forecasting," Working Papers 2010-39, Center for Research in Economics and Statistics.
    12. Christophe Chesneau & Salima El Kolei & Fabien Navarro, 2017. "Parametric estimation of hidden Markov models by least squares type estimation and deconvolution," Working Papers 2017-66, Center for Research in Economics and Statistics.
    13. Martin Kroll, 2019. "Nonparametric intensity estimation from noisy observations of a Poisson process under unknown error distribution," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(8), pages 961-990, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:42:y:2015:i:2:p:336-360. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.