IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v9y2000i2p283-344.html
   My bibliography  Save this article

Thresholding algorithms, maxisets and well-concentrated bases

Author

Listed:
  • Gérard Kerkyacharian
  • Dominique Picard
  • Lucien Birgé
  • Peter Hall
  • Oleg Lepski
  • Enno Mammen
  • Alexandre Tsybakov
  • G. Kerkyacharian
  • D. Picard

Abstract

No abstract is available for this item.

Suggested Citation

  • Gérard Kerkyacharian & Dominique Picard & Lucien Birgé & Peter Hall & Oleg Lepski & Enno Mammen & Alexandre Tsybakov & G. Kerkyacharian & D. Picard, 2000. "Thresholding algorithms, maxisets and well-concentrated bases," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 9(2), pages 283-344, December.
  • Handle: RePEc:spr:testjl:v:9:y:2000:i:2:p:283-344
    DOI: 10.1007/BF02595738
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/BF02595738
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/BF02595738?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kerkyacharian, G. & Picard, D., 1992. "Density estimation in Besov spaces," Statistics & Probability Letters, Elsevier, vol. 13(1), pages 15-24, January.
    2. Hoffmann, Marc, 1999. "On nonparametric estimation in nonlinear AR(1)-models," Statistics & Probability Letters, Elsevier, vol. 44(1), pages 29-45, August.
    3. Kerkyacharian, Gérard & Picard, Dominique, 1993. "Density estimation by kernel and wavelets methods: Optimality of Besov spaces," Statistics & Probability Letters, Elsevier, vol. 18(4), pages 327-336, November.
    4. Iain M. Johnstone & Bernard W. Silverman, 1997. "Wavelet Threshold Estimators for Data with Correlated Noise," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(2), pages 319-351.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chesneau, Christophe, 2008. "On the maxiset comparison between hard and block thresholding methods," Statistics & Probability Letters, Elsevier, vol. 78(6), pages 675-681, April.
    2. Autin, Florent & Freyermuth, Jean-Marc & von Sachs, Rainer, 2011. "Combining thresholding rules: a new way to improve the performance of wavelet estimators," LIDAM Discussion Papers ISBA 2011021, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Durastanti, Claudio, 2016. "Adaptive global thresholding on the sphere," Journal of Multivariate Analysis, Elsevier, vol. 151(C), pages 110-132.
    4. Peng, Jingfu, 2023. "Adaptive and efficient estimation in the Gaussian sequence model," Statistics & Probability Letters, Elsevier, vol. 195(C).
    5. Ammous, Sinda & Dedecker, Jérôme & Duval, Céline, 2024. "Adaptive directional estimator of the density in Rd for independent and mixing sequences," Journal of Multivariate Analysis, Elsevier, vol. 203(C).
    6. Aminghafari, Mina & Cheze, Nathalie & Poggi, Jean-Michel, 2006. "Multivariate denoising using wavelets and principal component analysis," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2381-2398, May.
    7. Rivoirard, Vincent, 2004. "Maxisets for linear procedures," Statistics & Probability Letters, Elsevier, vol. 67(3), pages 267-275, April.
    8. Durastanti, Claudio & Geller, Daryl & Marinucci, Domenico, 2012. "Adaptive nonparametric regression on spin fiber bundles," Journal of Multivariate Analysis, Elsevier, vol. 104(1), pages 16-38, February.
    9. F. Autin & J.-M. Freyermuth & R. von Sachs, 2012. "Combining thresholding rules: a new way to improve the performance of wavelet estimators," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(4), pages 905-922, December.
    10. Chesneau, Christophe, 2007. "Regression with random design: A minimax study," Statistics & Probability Letters, Elsevier, vol. 77(1), pages 40-53, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kato, Takeshi, 1999. "Density estimation by truncated wavelet expansion," Statistics & Probability Letters, Elsevier, vol. 43(2), pages 159-168, June.
    2. Gérard, Kerkyacharian & Dominique, Picard, 1997. "Limit of the quadratic risk in density estimation using linear methods," Statistics & Probability Letters, Elsevier, vol. 31(4), pages 299-312, February.
    3. Koo, Ja-Yong & Kim, Woo-Chul, 1996. "Wavelet density estimation by approximation of log-densities," Statistics & Probability Letters, Elsevier, vol. 26(3), pages 271-278, February.
    4. Durastanti, Claudio, 2016. "Adaptive global thresholding on the sphere," Journal of Multivariate Analysis, Elsevier, vol. 151(C), pages 110-132.
    5. Gaëlle Chagny & Claire Lacour, 2015. "Optimal adaptive estimation of the relative density," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 605-631, September.
    6. Liang Han-Ying & Mammitzsch Volker & Steinebach Josef, 2005. "Nonlinear wavelet density and hazard rate estimation for censored data under dependent observations," Statistics & Risk Modeling, De Gruyter, vol. 23(3), pages 161-180, March.
    7. Marina Vannucci & Brani Vidakovic, 1997. "Preventing the Dirac disaster: Wavelet based density estimation," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 6(2), pages 145-159, August.
    8. Hoffmann, Marc, 1997. "Minimax estimation of the diffusion coefficient through irregular samplings," Statistics & Probability Letters, Elsevier, vol. 32(1), pages 11-24, February.
    9. Pinheiro, Aluisio & Vidakovic, Brani, 1997. "Estimating the square root of a density via compactly supported wavelets," Computational Statistics & Data Analysis, Elsevier, vol. 25(4), pages 399-415, September.
    10. Liang, Han-Ying & de Uña-Álvarez, Jacobo, 2011. "Wavelet estimation of conditional density with truncated, censored and dependent data," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 448-467, March.
    11. Wishart, Justin Rory, 2011. "Minimax lower bound for kink location estimators in a nonparametric regression model with long-range dependence," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 1871-1875.
    12. Rivoirard, Vincent, 2004. "Maxisets for linear procedures," Statistics & Probability Letters, Elsevier, vol. 67(3), pages 267-275, April.
    13. Linyuan Li & Yimin Xiao, 2007. "Mean Integrated Squared Error of Nonlinear Wavelet-based Estimators with Long Memory Data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 59(2), pages 299-324, June.
    14. Hoffmann, Marc, 1999. "Adaptive estimation in diffusion processes," Stochastic Processes and their Applications, Elsevier, vol. 79(1), pages 135-163, January.
    15. Marianna Pensky, 2002. "Locally Adaptive Wavelet Empirical Bayes Estimation of a Location Parameter," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 54(1), pages 83-99, March.
    16. Luan, Yihui & Xie, Zhongjie, 2001. "The wavelet identification for jump points of derivative in regression model," Statistics & Probability Letters, Elsevier, vol. 53(2), pages 167-180, June.
    17. McGinnity, K. & Varbanov, R. & Chicken, E., 2017. "Cross-validated wavelet block thresholding for non-Gaussian errors," Computational Statistics & Data Analysis, Elsevier, vol. 106(C), pages 127-137.
    18. Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2011. "Inference on Treatment Effects After Selection Amongst High-Dimensional Controls," Papers 1201.0224, arXiv.org, revised May 2012.
    19. Fryzlewicz, Piotr & Nason, Guy P., 2004. "Smoothing the wavelet periodogram using the Haar-Fisz transform," LSE Research Online Documents on Economics 25231, London School of Economics and Political Science, LSE Library.
    20. repec:jss:jstsof:12:i08 is not listed on IDEAS
    21. Karun Adusumilli & Taisuke Otsu, 2015. "Nonparametric instrumental regression with errors in variables," STICERD - Econometrics Paper Series /2015/585, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:9:y:2000:i:2:p:283-344. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.