IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v151y2016icp110-132.html
   My bibliography  Save this article

Adaptive global thresholding on the sphere

Author

Listed:
  • Durastanti, Claudio

Abstract

This work is concerned with the study of the adaptivity properties of nonparametric regression estimators over the d-dimensional sphere within the global thresholding framework. The estimators are constructed by means of a form of spherical wavelets, the so-called needlets, which enjoy strong concentration properties in both harmonic and real domains. The author establishes the convergence rates of the Lp-risks of these estimators, focusing on their minimax properties and proving their optimality over a scale of nonparametric regularity function spaces, namely, the Besov spaces.

Suggested Citation

  • Durastanti, Claudio, 2016. "Adaptive global thresholding on the sphere," Journal of Multivariate Analysis, Elsevier, vol. 151(C), pages 110-132.
  • Handle: RePEc:eee:jmvana:v:151:y:2016:i:c:p:110-132
    DOI: 10.1016/j.jmva.2016.07.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X16300537
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2016.07.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Durastanti, Claudio & Geller, Daryl & Marinucci, Domenico, 2012. "Adaptive nonparametric regression on spin fiber bundles," Journal of Multivariate Analysis, Elsevier, vol. 104(1), pages 16-38, February.
    2. Lan, Xiaohong & Marinucci, Domenico, 2009. "On the dependence structure of wavelet coefficients for spherical random fields," Stochastic Processes and their Applications, Elsevier, vol. 119(10), pages 3749-3766, October.
    3. Eric Gautier & Erwann Le Pennec, 2011. "Adaptive Estimation in the Nonparametric Random Coefficients Binary Choice Model by Needlet Thresholding," Working Papers 2011-20, Center for Research in Economics and Statistics.
    4. Kerkyacharian, G. & Picard, D., 1992. "Density estimation in Besov spaces," Statistics & Probability Letters, Elsevier, vol. 13(1), pages 15-24, January.
    5. Kim, Peter T. & Koo, Ja-Yong, 2002. "Optimal Spherical Deconvolution," Journal of Multivariate Analysis, Elsevier, vol. 80(1), pages 21-42, January.
    6. Gérard Kerkyacharian & Dominique Picard & Lucien Birgé & Peter Hall & Oleg Lepski & Enno Mammen & Alexandre Tsybakov & G. Kerkyacharian & D. Picard, 2000. "Thresholding algorithms, maxisets and well-concentrated bases," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 9(2), pages 283-344, December.
    7. Jean-Baptiste Monnier, 2011. "Nonparametric regression on the hyper-sphere with uniform design," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 412-446, August.
    8. Koo, Ja-Yong & Kim, Peter T., 2008. "Sharp adaptation for spherical inverse problems with applications to medical imaging," Journal of Multivariate Analysis, Elsevier, vol. 99(2), pages 165-190, February.
    9. Kim, Peter T. & Koo, Ja-Yong & Luo, Zhi-Ming, 2009. "Weyl eigenvalue asymptotics and sharp adaptation on vector bundles," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 1962-1978, October.
    10. Kerkyacharian, Gérard & Picard, Dominique, 1993. "Density estimation by kernel and wavelets methods: Optimality of Besov spaces," Statistics & Probability Letters, Elsevier, vol. 18(4), pages 327-336, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maurizia Rossi, 2019. "The Defect of Random Hyperspherical Harmonics," Journal of Theoretical Probability, Springer, vol. 32(4), pages 2135-2165, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Durastanti, Claudio & Geller, Daryl & Marinucci, Domenico, 2012. "Adaptive nonparametric regression on spin fiber bundles," Journal of Multivariate Analysis, Elsevier, vol. 104(1), pages 16-38, February.
    2. Kato, Takeshi, 1999. "Density estimation by truncated wavelet expansion," Statistics & Probability Letters, Elsevier, vol. 43(2), pages 159-168, June.
    3. Gérard, Kerkyacharian & Dominique, Picard, 1997. "Limit of the quadratic risk in density estimation using linear methods," Statistics & Probability Letters, Elsevier, vol. 31(4), pages 299-312, February.
    4. Rivoirard, Vincent, 2004. "Maxisets for linear procedures," Statistics & Probability Letters, Elsevier, vol. 67(3), pages 267-275, April.
    5. Koo, Ja-Yong & Kim, Woo-Chul, 1996. "Wavelet density estimation by approximation of log-densities," Statistics & Probability Letters, Elsevier, vol. 26(3), pages 271-278, February.
    6. Gaëlle Chagny & Claire Lacour, 2015. "Optimal adaptive estimation of the relative density," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 605-631, September.
    7. Kim, Peter T. & Koo, Ja-Yong & Luo, Zhi-Ming, 2009. "Weyl eigenvalue asymptotics and sharp adaptation on vector bundles," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 1962-1978, October.
    8. Gérard Kerkyacharian & Dominique Picard & Lucien Birgé & Peter Hall & Oleg Lepski & Enno Mammen & Alexandre Tsybakov & G. Kerkyacharian & D. Picard, 2000. "Thresholding algorithms, maxisets and well-concentrated bases," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 9(2), pages 283-344, December.
    9. Claudio Durastanti, 2016. "Quantitative central limit theorems for Mexican needlet coefficients on circular Poisson fields," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 25(4), pages 651-673, November.
    10. Liang Han-Ying & Mammitzsch Volker & Steinebach Josef, 2005. "Nonlinear wavelet density and hazard rate estimation for censored data under dependent observations," Statistics & Risk Modeling, De Gruyter, vol. 23(3), pages 161-180, March.
    11. Marina Vannucci & Brani Vidakovic, 1997. "Preventing the Dirac disaster: Wavelet based density estimation," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 6(2), pages 145-159, August.
    12. Hoffmann, Marc, 1997. "Minimax estimation of the diffusion coefficient through irregular samplings," Statistics & Probability Letters, Elsevier, vol. 32(1), pages 11-24, February.
    13. Pinheiro, Aluisio & Vidakovic, Brani, 1997. "Estimating the square root of a density via compactly supported wavelets," Computational Statistics & Data Analysis, Elsevier, vol. 25(4), pages 399-415, September.
    14. Liang, Han-Ying & de Uña-Álvarez, Jacobo, 2011. "Wavelet estimation of conditional density with truncated, censored and dependent data," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 448-467, March.
    15. Andrew Chesher & Adam M. Rosen, 2014. "An instrumental variable random‐coefficients model for binary outcomes," Econometrics Journal, Royal Economic Society, vol. 17(2), pages 1-19, June.
    16. Xiaohong Chen & Timothy M. Christensen, 2015. "Optimal sup-norm rates, adaptivity and inference in nonparametric instrumental variables estimation," CeMMAP working papers 32/15, Institute for Fiscal Studies.
    17. Hoffmann, Marc, 1999. "Adaptive estimation in diffusion processes," Stochastic Processes and their Applications, Elsevier, vol. 79(1), pages 135-163, January.
    18. Marianna Pensky, 2002. "Locally Adaptive Wavelet Empirical Bayes Estimation of a Location Parameter," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 54(1), pages 83-99, March.
    19. Pham Ngoc, Thanh Mai & Rivoirard, Vincent, 2013. "The dictionary approach for spherical deconvolution," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 138-156.
    20. Xiaohong Chen & Timothy Christensen, 2013. "Optimal Sup-norm Rates, Adaptivity and Inference in Nonparametric Instrumental Variables Estimation," Cowles Foundation Discussion Papers 1923R, Cowles Foundation for Research in Economics, Yale University, revised Apr 2015.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:151:y:2016:i:c:p:110-132. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.