IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v14y2012i3d10.1007_s11009-011-9263-6.html
   My bibliography  Save this article

Weighted Moment Estimators for the Second Order Scale Parameter

Author

Listed:
  • Tertius de Wet

    (University of Stellenbosch)

  • Yuri Goegebeur

    (University of Southern Denmark)

  • Armelle Guillou

    (Université de Strasbourg et CNRS)

Abstract

We consider the estimation of the scale parameter appearing in the second order condition when the distribution underlying the data is of Pareto-type. Inspired by the work of Goegebeur et al. (J Stat Plan Inference 140:2632–2652, 2010) on the estimation of the second order rate parameter, we introduce a flexible class of estimators for the second order scale parameter, which has weighted sums of scaled log spacings of successive order statistics as basic building blocks. Under the second order condition, some conditions on the weight functions, and for appropriately chosen sequences of intermediate order statistics, we establish the consistency of our class of estimators. Asymptotic normality is achieved under a further condition on the tail function 1 − F, the so-called third order condition. As the proposed estimator depends on the second order rate parameter, we also examine the effect of replacing the latter by a consistent estimator. The asymptotic performance of some specific examples of our proposed class of estimators is illustrated numerically, and their finite sample behavior is examined by a small simulation experiment.

Suggested Citation

  • Tertius de Wet & Yuri Goegebeur & Armelle Guillou, 2012. "Weighted Moment Estimators for the Second Order Scale Parameter," Methodology and Computing in Applied Probability, Springer, vol. 14(3), pages 753-783, September.
  • Handle: RePEc:spr:metcap:v:14:y:2012:i:3:d:10.1007_s11009-011-9263-6
    DOI: 10.1007/s11009-011-9263-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-011-9263-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-011-9263-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gomes, M. Ivette & Pestana, Dinis & Caeiro, Frederico, 2009. "A note on the asymptotic variance at optimal levels of a bias-corrected Hill estimator," Statistics & Probability Letters, Elsevier, vol. 79(3), pages 295-303, February.
    2. Holger Drees, 1998. "On Smooth Statistical Tail Functionals," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 25(1), pages 187-210, March.
    3. M. Ivette Gomes & Laurens De Haan & Lígia Henriques Rodrigues, 2008. "Tail index estimation for heavy‐tailed models: accommodation of bias in weighted log‐excesses," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(1), pages 31-52, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dierckx, Goedele & Goegebeur, Yuri & Guillou, Armelle, 2013. "An asymptotically unbiased minimum density power divergence estimator for the Pareto-tail index," Journal of Multivariate Analysis, Elsevier, vol. 121(C), pages 70-86.
    2. Wager, Stefan, 2014. "Subsampling extremes: From block maxima to smooth tail estimation," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 335-353.
    3. Beirlant, Jan & Escobar-Bach, Mikael & Goegebeur, Yuri & Guillou, Armelle, 2016. "Bias-corrected estimation of stable tail dependence function," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 453-466.
    4. Frederico Caeiro & M. Gomes, 2009. "Semi-parametric second-order reduced-bias high quantile estimation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(2), pages 392-413, August.
    5. Cai, J., 2012. "Estimation concerning risk under extreme value conditions," Other publications TiSEM a92b089f-bc4c-41c2-b297-c, Tilburg University, School of Economics and Management.
    6. El Methni, Jonathan & Stupfler, Gilles, 2018. "Improved estimators of extreme Wang distortion risk measures for very heavy-tailed distributions," Econometrics and Statistics, Elsevier, vol. 6(C), pages 129-148.
    7. Svetlana Litvinova & Mervyn J. Silvapulle, 2020. "Consistency of full-sample bootstrap for estimating high-quantile, tail probability, and tail index," Monash Econometrics and Business Statistics Working Papers 15/20, Monash University, Department of Econometrics and Business Statistics.
    8. Fátima Brilhante, M. & Ivette Gomes, M. & Pestana, Dinis, 2013. "A simple generalisation of the Hill estimator," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 518-535.
    9. Igor Fedotenkov, 2020. "A Review of More than One Hundred Pareto-Tail Index Estimators," Statistica, Department of Statistics, University of Bologna, vol. 80(3), pages 245-299.
    10. Maarten R C van Oordt & Chen Zhou, 2019. "Estimating Systematic Risk under Extremely Adverse Market Conditions," Journal of Financial Econometrics, Oxford University Press, vol. 17(3), pages 432-461.
    11. Daouia, Abdelaati & Girard, Stéphane & Stupfler, Gilles, 2018. "Tail expectile process and risk assessment," TSE Working Papers 18-944, Toulouse School of Economics (TSE).
    12. Matheus Henrique Junqueira Saldanha & Adriano Kamimura Suzuki, 2023. "On dealing with the unknown population minimum in parametric inference," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 107(3), pages 509-535, September.
    13. de Haan, Laurens & Canto e Castro, Luisa, 2006. "A class of distribution functions with less bias in extreme value estimation," Statistics & Probability Letters, Elsevier, vol. 76(15), pages 1617-1624, September.
    14. Xiao Wang & Lihong Wang, 2024. "A tail index estimation for long memory processes," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 87(8), pages 947-971, November.
    15. Goedele Dierckx & Yuri Goegebeur & Armelle Guillou, 2021. "Local Robust Estimation of Pareto-Type Tails with Random Right Censoring," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 70-108, February.
    16. Einmahl, J.H.J. & Lin, T., 2003. "Asymptotic Normality of Extreme Value Estimators on C[0,1]," Discussion Paper 2003-132, Tilburg University, Center for Economic Research.
    17. Peng, Zuoxiang & Liao, Xin, 2015. "Second-order asymptotics for convolution of distributions with light tails," Statistics & Probability Letters, Elsevier, vol. 106(C), pages 199-208.
    18. Moosup Kim & Sangyeol Lee, 2017. "Estimation of the tail exponent of multivariate regular variation," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(5), pages 945-968, October.
    19. M. Ivette Gomes & Armelle Guillou, 2015. "Extreme Value Theory and Statistics of Univariate Extremes: A Review," International Statistical Review, International Statistical Institute, vol. 83(2), pages 263-292, August.
    20. Vygantas Paulauskas & Marijus Vaičiulis, 2017. "A class of new tail index estimators," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(2), pages 461-487, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:14:y:2012:i:3:d:10.1007_s11009-011-9263-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.