IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v83y2018icp59-74.html
   My bibliography  Save this article

Extreme quantile estimation for β-mixing time series and applications

Author

Listed:
  • Chavez-Demoulin, Valérie
  • Guillou, Armelle

Abstract

In this paper, we discuss the application of extreme value theory in the context of stationary β-mixing sequences that belong to the Fréchet domain of attraction. In particular, we propose a methodology to construct bias-corrected tail estimators. Our approach is based on the combination of two estimators for the extreme value index to cancel the bias. The resulting estimator is used to estimate an extreme quantile. In a simulation study, we outline the performance of our proposals that we compare to alternative estimators recently introduced in the literature. Also, we compute the asymptotic variance in specific examples when possible. Our methodology is applied to two datasets on finance and environment.

Suggested Citation

  • Chavez-Demoulin, Valérie & Guillou, Armelle, 2018. "Extreme quantile estimation for β-mixing time series and applications," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 59-74.
  • Handle: RePEc:eee:insuma:v:83:y:2018:i:c:p:59-74
    DOI: 10.1016/j.insmatheco.2018.09.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668718300192
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2018.09.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    2. Gardes, Laurent & Girard, Stéphane, 2008. "A moving window approach for nonparametric estimation of the conditional tail index," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2368-2388, November.
    3. McNeil, Alexander J. & Frey, Rudiger, 2000. "Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 271-300, November.
    4. Tarullo, Daniel, 2008. "Banking on Basel: The Future of International Financial Regulation," Peterson Institute Press: All Books, Peterson Institute for International Economics, number 4235, January.
    5. Yuri Goegebeur & Armelle Guillou, 2013. "Asymptotically Unbiased Estimation of the Coefficient of Tail Dependence," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(1), pages 174-189, March.
    6. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
    7. Chavez-Demoulin, V. & Embrechts, P. & Sardy, S., 2014. "Extreme-quantile tracking for financial time series," Journal of Econometrics, Elsevier, vol. 181(1), pages 44-52.
    8. Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
    9. Laurens Haan & Cécile Mercadier & Chen Zhou, 2016. "Adapting extreme value statistics to financial time series: dealing with bias and serial dependence," Finance and Stochastics, Springer, vol. 20(2), pages 321-354, April.
    10. M. Ivette Gomes & Laurens De Haan & Lígia Henriques Rodrigues, 2008. "Tail index estimation for heavy‐tailed models: accommodation of bias in weighted log‐excesses," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(1), pages 31-52, February.
    11. Matthys, Gunther & Delafosse, Emmanuel & Guillou, Armelle & Beirlant, Jan, 2004. "Estimating catastrophic quantile levels for heavy-tailed distributions," Insurance: Mathematics and Economics, Elsevier, vol. 34(3), pages 517-537, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aigner, Maximilian & Chavez-Demoulin, Valérie & Guillou, Armelle, 2022. "Measuring and comparing risks of different types," Insurance: Mathematics and Economics, Elsevier, vol. 102(C), pages 1-21.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. H. Kaibuchi & Y. Kawasaki & G. Stupfler, 2022. "GARCH-UGH: a bias-reduced approach for dynamic extreme Value-at-Risk estimation in financial time series," Quantitative Finance, Taylor & Francis Journals, vol. 22(7), pages 1277-1294, July.
    2. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    3. Marie Kratz & Yen H Lok & Alexander J Mcneil, 2016. "Multinomial var backtests: A simple implicit approach to backtesting expected shortfall," Working Papers hal-01424279, HAL.
    4. Gordy, Michael B. & McNeil, Alexander J., 2020. "Spectral backtests of forecast distributions with application to risk management," Journal of Banking & Finance, Elsevier, vol. 116(C).
    5. Dean Fantazzini & Stephan Zimin, 2020. "A multivariate approach for the simultaneous modelling of market risk and credit risk for cryptocurrencies," Economia e Politica Industriale: Journal of Industrial and Business Economics, Springer;Associazione Amici di Economia e Politica Industriale, vol. 47(1), pages 19-69, March.
    6. Abdul-Aziz Ibn Musah & Jianguo Du & Hira Salah Ud din Khan & Alhassan Alolo Abdul-Rasheed Akeji, 2018. "The Asymptotic Decision Scenarios of an Emerging Stock Exchange Market: Extreme Value Theory and Artificial Neural Network," Risks, MDPI, vol. 6(4), pages 1-24, November.
    7. Ke, Rui & Yang, Luyao & Tan, Changchun, 2022. "Forecasting tail risk for Bitcoin: A dynamic peak over threshold approach," Finance Research Letters, Elsevier, vol. 49(C).
    8. Xu, Qifa & Chen, Lu & Jiang, Cuixia & Yu, Keming, 2020. "Mixed data sampling expectile regression with applications to measuring financial risk," Economic Modelling, Elsevier, vol. 91(C), pages 469-486.
    9. Kratz, Marie & Lok, Y-H & McNeil, Alexander J., 2016. "Multinomial VaR Backtests: A simple implicit approach to backtesting expected shortfall," ESSEC Working Papers WP1617, ESSEC Research Center, ESSEC Business School.
    10. Kratz, Marie & Lok, Yen H. & McNeil, Alexander J., 2018. "Multinomial VaR backtests: A simple implicit approach to backtesting expected shortfall," Journal of Banking & Finance, Elsevier, vol. 88(C), pages 393-407.
    11. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    12. Polanski, Arnold & Stoja, Evarist, 2017. "Forecasting multidimensional tail risk at short and long horizons," International Journal of Forecasting, Elsevier, vol. 33(4), pages 958-969.
    13. Lazar, Emese & Zhang, Ning, 2019. "Model risk of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 105(C), pages 74-93.
    14. Gerlach, Richard & Wang, Chao, 2020. "Semi-parametric dynamic asymmetric Laplace models for tail risk forecasting, incorporating realized measures," International Journal of Forecasting, Elsevier, vol. 36(2), pages 489-506.
    15. Gaglianone, Wagner Piazza & Lima, Luiz Renato & Linton, Oliver & Smith, Daniel R., 2011. "Evaluating Value-at-Risk Models via Quantile Regression," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(1), pages 150-160.
    16. Herrera, R. & Clements, A.E., 2018. "Point process models for extreme returns: Harnessing implied volatility," Journal of Banking & Finance, Elsevier, vol. 88(C), pages 161-175.
    17. Alexander, Carol & Sheedy, Elizabeth, 2008. "Developing a stress testing framework based on market risk models," Journal of Banking & Finance, Elsevier, vol. 32(10), pages 2220-2236, October.
    18. Peña, Juan Ignacio & Rodríguez, Rosa & Mayoral, Silvia, 2020. "Tail risk of electricity futures," Energy Economics, Elsevier, vol. 91(C).
    19. Gonzalo Cortazar & Alejandro Bernales & Diether Beuermann, 2005. "Methodology and Implementation of Value-at-Risk Measures in Emerging Fixed-Income Markets with Infrequent Trading," Finance 0512030, University Library of Munich, Germany.
    20. Stelios Bekiros & Nikolaos Loukeris & Iordanis Eleftheriadis & Christos Avdoulas, 2019. "Tail-Related Risk Measurement and Forecasting in Equity Markets," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 783-816, February.

    More about this item

    Keywords

    Asymptotic normality; β-mixing; Extreme value index; GARCH models; High quantile; Return level; Value-at-Risk;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:83:y:2018:i:c:p:59-74. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.