IDEAS home Printed from https://ideas.repec.org/a/spr/telsys/v73y2020i4d10.1007_s11235-019-00629-w.html
   My bibliography  Save this article

Modelling time-dependent aggregate traffic in 5G networks

Author

Listed:
  • Vijayalakshmi Chetlapalli

    (Symbiosis Institute of Technology (Constituent of Symbiosis International University))

  • K. S. S. Iyer

    (Member, IEEE)

  • Himanshu Agrawal

    (Symbiosis Institute of Technology [Constitutent of Symbiosis International (Deemed University)])

Abstract

Future wireless networks like 5G will carry an increasingly wide variety of data traffic, with different QoS requirements. In addition to conventional data traffic generated from HTTP, FTP and video streaming applications by mobile broadband users [human-type communication (HTC)], traffic from machine-to-machine (M2M) and Internet-of-Things (IoT) applications [machine-type communication (MTC)] has to be supported by 5G networks. Time-of-day variation in arrival rate of connection-level requests and randomness in length of data sessions in HTC result in randomness in aggregate traffic. In MTC, randomness in traffic arises from random number of devices trying to connect to the base station at any given time. Traffic generated by MTC devices may be either periodic or event-triggered. Nevertheless, it is difficult to model aggregate traffic due to non-stationary nature of traffic generated by each type of service. In this paper, special correlation functions of stochastic point processes called Product Densities (PDs) are used for estimating aggregate traffic under non-stationary arrival rates. For HTC, PDs are defined for estimating time-dependent offered load of connection-level service requests and expected number of ON periods in an interval of time $$(0,T)$$(0,T). The aggregate traffic is evaluated for light-tail (exponential) and heavy-tail (hyper exponential) servicing times. For MTC, PDs are defined for estimating the random number of devices connected to the base station at any time. Another QoS parameter of interest in high speed networks is the expected number of service requests/devices delayed beyond a critical value of delay. Bi-variate PD is defined to estimate the number of service requests/devices delayed beyond a given critical threshold. The results from PD model show close agreement with simulation results. The proposed PD technique proves effective in performance analysis under time-dependent traffic conditions, and is versatile for application to several studies in wireless networks including power consumption, interference and handover performance.

Suggested Citation

  • Vijayalakshmi Chetlapalli & K. S. S. Iyer & Himanshu Agrawal, 2020. "Modelling time-dependent aggregate traffic in 5G networks," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 73(4), pages 557-575, April.
  • Handle: RePEc:spr:telsys:v:73:y:2020:i:4:d:10.1007_s11235-019-00629-w
    DOI: 10.1007/s11235-019-00629-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11235-019-00629-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11235-019-00629-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Schwarz, Justus Arne & Selinka, Gregor & Stolletz, Raik, 2016. "Performance analysis of time-dependent queueing systems: Survey and classification," Omega, Elsevier, vol. 63(C), pages 170-189.
    2. Ward Whitt, 2016. "Heavy-traffic fluid limits for periodic infinite-server queues," Queueing Systems: Theory and Applications, Springer, vol. 84(1), pages 111-143, October.
    3. Stephen G. Eick & William A. Massey & Ward Whitt, 1993. "Mt/G/\infty Queues with Sinusoidal Arrival Rates," Management Science, INFORMS, vol. 39(2), pages 241-252, February.
    4. Ward Whitt, 2013. "OM Forum —Offered Load Analysis for Staffing," Manufacturing & Service Operations Management, INFORMS, vol. 15(2), pages 166-169, May.
    5. Toon Pessemier & Isabelle Stevens & Lieven Marez & Luc Martens & Wout Joseph, 2016. "Quality assessment and usage behavior of a mobile voice-over-IP service," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 61(3), pages 417-432, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pei, Zhi & Dai, Xu & Yuan, Yilun & Du, Rui & Liu, Changchun, 2021. "Managing price and fleet size for courier service with shared drones," Omega, Elsevier, vol. 104(C).
    2. Yacov Satin & Rostislav Razumchik & Ivan Kovalev & Alexander Zeifman, 2023. "Ergodicity and Related Bounds for One Particular Class of Markovian Time—Varying Queues with Heterogeneous Servers and Customer’s Impatience," Mathematics, MDPI, vol. 11(9), pages 1-15, April.
    3. Na Li & Xiaorui Li & Paul Forero, 2022. "Physician scheduling for outpatient department with nonhomogeneous patient arrival and priority queue," Flexible Services and Manufacturing Journal, Springer, vol. 34(4), pages 879-915, December.
    4. Andersen, Anders Reenberg & Nielsen, Bo Friis & Reinhardt, Line Blander & Stidsen, Thomas Riis, 2019. "Staff optimization for time-dependent acute patient flow," European Journal of Operational Research, Elsevier, vol. 272(1), pages 94-105.
    5. Linda V. Green & Peter J. Kolesar, 1998. "A Note on Approximating Peak Congestion in Mt/G/\infty Queues with Sinusoidal Arrivals," Management Science, INFORMS, vol. 44(11-Part-2), pages 137-144, November.
    6. Ansari, Sardar & Yoon, Soovin & Albert, Laura A., 2017. "An approximate hypercube model for public service systems with co-located servers and multiple response," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 143-157.
    7. Yacov Satin & Alexander Zeifman & Alexander Sipin & Sherif I. Ammar & Janos Sztrik, 2020. "On Probability Characteristics for a Class of Queueing Models with Impatient Customers," Mathematics, MDPI, vol. 8(4), pages 1-15, April.
    8. Yang, Feng & Liu, Jingang, 2012. "Simulation-based transfer function modeling for transient analysis of general queueing systems," European Journal of Operational Research, Elsevier, vol. 223(1), pages 150-166.
    9. Tsiligianni, Christiana & Tsiligiannis, Aristeides & Tsiliyannis, Christos, 2023. "A stochastic inventory model of COVID-19 and robust, real-time identification of carriers at large and infection rate via asymptotic laws," European Journal of Operational Research, Elsevier, vol. 304(1), pages 42-56.
    10. Zeifman, A. & Satin, Y. & Kiseleva, K. & Korolev, V. & Panfilova, T., 2019. "On limiting characteristics for a non-stationary two-processor heterogeneous system," Applied Mathematics and Computation, Elsevier, vol. 351(C), pages 48-65.
    11. Mahes, Roshan & Mandjes, Michel & Boon, Marko & Taylor, Peter, 2024. "Adaptive scheduling in service systems: A Dynamic programming approach," European Journal of Operational Research, Elsevier, vol. 312(2), pages 605-626.
    12. Noa Zychlinski & Avishai Mandelbaum & Petar Momčilović, 2018. "Time-varying tandem queues with blocking: modeling, analysis, and operational insights via fluid models with reflection," Queueing Systems: Theory and Applications, Springer, vol. 89(1), pages 15-47, June.
    13. Alexander Zeifman & Yacov Satin & Ivan Kovalev & Rostislav Razumchik & Victor Korolev, 2020. "Facilitating Numerical Solutions of Inhomogeneous Continuous Time Markov Chains Using Ergodicity Bounds Obtained with Logarithmic Norm Method," Mathematics, MDPI, vol. 9(1), pages 1-20, December.
    14. Yacov Satin & Alexander Zeifman & Anastasia Kryukova, 2019. "On the Rate of Convergence and Limiting Characteristics for a Nonstationary Queueing Model," Mathematics, MDPI, vol. 7(8), pages 1-11, July.
    15. Zeifman, A.I. & Razumchik, R.V. & Satin, Y.A. & Kovalev, I.A., 2021. "Ergodicity bounds for the Markovian queue with time-varying transition intensities, batch arrivals and one queue skipping policy," Applied Mathematics and Computation, Elsevier, vol. 395(C).
    16. Zohar Feldman & Avishai Mandelbaum & William A. Massey & Ward Whitt, 2008. "Staffing of Time-Varying Queues to Achieve Time-Stable Performance," Management Science, INFORMS, vol. 54(2), pages 324-338, February.
    17. Galit B. Yom-Tov & Avishai Mandelbaum, 2014. "Erlang-R: A Time-Varying Queue with Reentrant Customers, in Support of Healthcare Staffing," Manufacturing & Service Operations Management, INFORMS, vol. 16(2), pages 283-299, May.
    18. Narayanan C. Viswanath, 2022. "Transient study of Markov models with time-dependent transition rates," Operational Research, Springer, vol. 22(3), pages 2209-2243, July.
    19. B. H. Margolius, 2023. "The periodic steady-state solution for queues with Erlang arrivals and service and time-varying periodic transition rates," Queueing Systems: Theory and Applications, Springer, vol. 103(1), pages 45-94, February.
    20. Pang, Guodong & Zheng, Yi, 2017. "On the functional and local limit theorems for Markov modulated compound Poisson processes," Statistics & Probability Letters, Elsevier, vol. 129(C), pages 131-140.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:telsys:v:73:y:2020:i:4:d:10.1007_s11235-019-00629-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.