Facilitating Numerical Solutions of Inhomogeneous Continuous Time Markov Chains Using Ergodicity Bounds Obtained with Logarithmic Norm Method
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Linda Green & Peter Kolesar, 1991. "The Pointwise Stationary Approximation for Queues with Nonstationary Arrivals," Management Science, INFORMS, vol. 37(1), pages 84-97, January.
- Schwarz, Justus Arne & Selinka, Gregor & Stolletz, Raik, 2016. "Performance analysis of time-dependent queueing systems: Survey and classification," Omega, Elsevier, vol. 63(C), pages 170-189.
- Anyue Chen & Xiaohan Wu & Jing Zhang, 2020. "Markovian bulk-arrival and bulk-service queues with general state-dependent control," Queueing Systems: Theory and Applications, Springer, vol. 95(3), pages 331-378, August.
- Soongeol Kwon & Natarajan Gautam, 2016. "Guaranteeing performance based on time-stability for energy-efficient data centers," IISE Transactions, Taylor & Francis Journals, vol. 48(9), pages 812-825, September.
- Liu, Yunan & Whitt, Ward, 2017. "Stabilizing performance in a service system with time-varying arrivals and customer feedback," European Journal of Operational Research, Elsevier, vol. 256(2), pages 473-486.
- Armann Ingolfsson & Elvira Akhmetshina & Susan Budge & Yongyue Li & Xudong Wu, 2007. "A Survey and Experimental Comparison of Service-Level-Approximation Methods for Nonstationary M(t)/M/s(t) Queueing Systems with Exhaustive Discipline," INFORMS Journal on Computing, INFORMS, vol. 19(2), pages 201-214, May.
- Ward Whitt & Wei You, 2019. "Time-Varying Robust Queueing," Operations Research, INFORMS, vol. 67(6), pages 1766-1782, November.
- M. Arns & P. Buchholz & A. Panchenko, 2010. "On the Numerical Analysis of Inhomogeneous Continuous-Time Markov Chains," INFORMS Journal on Computing, INFORMS, vol. 22(3), pages 416-432, August.
- Peter J. Kolesar & Kenneth L. Rider & Thomas B. Crabill & Warren E. Walker, 1975. "A Queuing-Linear Programming Approach to Scheduling Police Patrol Cars," Operations Research, INFORMS, vol. 23(6), pages 1045-1062, December.
- Pier Conti, 1997. "An asymptotic test for a geometric process against a lattice distribution with monotone hazard," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 6(3), pages 213-231, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yongkyu Cho & Young Myoung Ko, 2020. "Stabilizing the virtual response time in single-server processor sharing queues with slowly time-varying arrival rates," Annals of Operations Research, Springer, vol. 293(1), pages 27-55, October.
- Schwarz, Justus Arne & Selinka, Gregor & Stolletz, Raik, 2016. "Performance analysis of time-dependent queueing systems: Survey and classification," Omega, Elsevier, vol. 63(C), pages 170-189.
- Yacov Satin & Rostislav Razumchik & Ilya Usov & Alexander Zeifman, 2023. "Numerical Computation of Distributions in Finite-State Inhomogeneous Continuous Time Markov Chains, Based on Ergodicity Bounds and Piecewise Constant Approximation," Mathematics, MDPI, vol. 11(20), pages 1-12, October.
- William A. Massey & Jamol Pender, 2018. "Dynamic rate Erlang-A queues," Queueing Systems: Theory and Applications, Springer, vol. 89(1), pages 127-164, June.
- Pei, Zhi & Dai, Xu & Yuan, Yilun & Du, Rui & Liu, Changchun, 2021. "Managing price and fleet size for courier service with shared drones," Omega, Elsevier, vol. 104(C).
- Niyirora, Jerome & Zhuang, Jun, 2017. "Fluid approximations and control of queues in emergency departments," European Journal of Operational Research, Elsevier, vol. 261(3), pages 1110-1124.
- Yacov Satin & Rostislav Razumchik & Ivan Kovalev & Alexander Zeifman, 2023. "Ergodicity and Related Bounds for One Particular Class of Markovian Time—Varying Queues with Heterogeneous Servers and Customer’s Impatience," Mathematics, MDPI, vol. 11(9), pages 1-15, April.
- Ran Liu & Xiaolan Xie, 2018. "Physician Staffing for Emergency Departments with Time-Varying Demand," INFORMS Journal on Computing, INFORMS, vol. 30(3), pages 588-607, August.
- Defraeye, Mieke & Van Nieuwenhuyse, Inneke, 2016. "Staffing and scheduling under nonstationary demand for service: A literature review," Omega, Elsevier, vol. 58(C), pages 4-25.
- Linda V. Green & Peter J. Kolesar, 1998. "A Note on Approximating Peak Congestion in Mt/G/\infty Queues with Sinusoidal Arrivals," Management Science, INFORMS, vol. 44(11-Part-2), pages 137-144, November.
- Ad Ridder, 2022. "Rare-event analysis and simulation of queues with time-varying rates," Queueing Systems: Theory and Applications, Springer, vol. 100(3), pages 545-547, April.
- Yue Zhang & Martin L. Puterman & Matthew Nelson & Derek Atkins, 2012. "A Simulation Optimization Approach to Long-Term Care Capacity Planning," Operations Research, INFORMS, vol. 60(2), pages 249-261, April.
- Eugene Furman & Adam Diamant & Murat Kristal, 2021. "Customer Acquisition and Retention: A Fluid Approach for Staffing," Production and Operations Management, Production and Operations Management Society, vol. 30(11), pages 4236-4257, November.
- Hu, Lu & Zhao, Bin & Zhu, Juanxiu & Jiang, Yangsheng, 2019. "Two time-varying and state-dependent fluid queuing models for traffic circulation systems," European Journal of Operational Research, Elsevier, vol. 275(3), pages 997-1019.
- J. G. Dai & Pengyi Shi, 2017. "A Two-Time-Scale Approach to Time-Varying Queues in Hospital Inpatient Flow Management," Operations Research, INFORMS, vol. 65(2), pages 514-536, April.
- Ward Whitt & Wei You, 2019. "Time-Varying Robust Queueing," Operations Research, INFORMS, vol. 67(6), pages 1766-1782, November.
- Gabriel Zayas-Cabán & Mark E. Lewis, 2020. "Admission control in a two-class loss system with periodically varying parameters and abandonments," Queueing Systems: Theory and Applications, Springer, vol. 94(1), pages 175-210, February.
- Zeifman, A.I. & Razumchik, R.V. & Satin, Y.A. & Kovalev, I.A., 2021. "Ergodicity bounds for the Markovian queue with time-varying transition intensities, batch arrivals and one queue skipping policy," Applied Mathematics and Computation, Elsevier, vol. 395(C).
- Linda V. Green & Peter J. Kolesar & João Soares, 2001. "Improving the Sipp Approach for Staffing Service Systems That Have Cyclic Demands," Operations Research, INFORMS, vol. 49(4), pages 549-564, August.
- Ali Yousefi & Reza Pourtaheri & Mohammad Reza Salehi Rad, 2024. "Analysis of the Mt/M/1 Queueing System with Impatient Customers and Single Vacation," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 86(2), pages 690-712, November.
More about this item
Keywords
continuous-time Markov chains; ergodicity bounds; discrete state space; rate of convergence; logarithmic norm;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2020:i:1:p:42-:d:469068. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.