IDEAS home Printed from https://ideas.repec.org/a/spr/queues/v89y2018i1d10.1007_s11134-018-9578-x.html
   My bibliography  Save this article

Time-varying tandem queues with blocking: modeling, analysis, and operational insights via fluid models with reflection

Author

Listed:
  • Noa Zychlinski

    (Technion – Israel Institute of Technology)

  • Avishai Mandelbaum

    (Technion – Israel Institute of Technology)

  • Petar Momčilović

    (University of Florida)

Abstract

In this paper, we develop time-varying fluid models for tandem networks with blocking. Beyond having their own intrinsic value, these mathematical models are also limits of corresponding many-server stochastic systems. We begin by analyzing a two-station tandem network with a general time-varying arrival rate, a finite waiting room before the first station, and no waiting room between the stations. In this model, customers that are referred from the first station to the second when the latter is saturated (blocked) are forced to wait in the first station while occupying a server there. The finite waiting room before the first station causes customer loss and, therefore, requires reflection analysis. We then specialize our model to a single station (many-server fluid limit of the $$G_t/M/N/(N +H)$$ G t / M / N / ( N + H ) queue), generalize it to k stations in tandem, and allow finite internal waiting rooms. Our models yield operational insights into network performance, specifically on the effects of line length, bottleneck location, waiting room size, and the interaction among these effects.

Suggested Citation

  • Noa Zychlinski & Avishai Mandelbaum & Petar Momčilović, 2018. "Time-varying tandem queues with blocking: modeling, analysis, and operational insights via fluid models with reflection," Queueing Systems: Theory and Applications, Springer, vol. 89(1), pages 15-47, June.
  • Handle: RePEc:spr:queues:v:89:y:2018:i:1:d:10.1007_s11134-018-9578-x
    DOI: 10.1007/s11134-018-9578-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11134-018-9578-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11134-018-9578-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert M. Oliver & Aryeh H. Samuel, 1962. "Reducing Letter Delays in Post Offices," Operations Research, INFORMS, vol. 10(6), pages 839-892, December.
    2. B. Avi-Itzhak & M. Yadin, 1965. "A Sequence of Two Servers with No Intermediate Queue," Management Science, INFORMS, vol. 11(5), pages 553-564, March.
    3. Yunan Liu & Ward Whitt, 2011. "A Network of Time-Varying Many-Server Fluid Queues with Customer Abandonment," Operations Research, INFORMS, vol. 59(4), pages 835-846, August.
    4. Ward Whitt, 1985. "The Best Order for Queues in Series," Management Science, INFORMS, vol. 31(4), pages 475-487, April.
    5. Kelly, F. P., 1984. "Blocking, reordering, and the throughput of a series of servers," Stochastic Processes and their Applications, Elsevier, vol. 17(2), pages 327-336, July.
    6. E. El‐Darzi & C. Vasilakis & T. Chaussalet & P.H. Millard, 1998. "A simulation modelling approach to evaluating length of stay, occupancy, emptiness and bed blocking in a hospital geriatric department," Health Care Management Science, Springer, vol. 1(2), pages 143-149, October.
    7. Stanley B. Gershwin, 1987. "An Efficient Decomposition Method for the Approximate Evaluation of Tandem Queues with Finite Storage Space and Blocking," Operations Research, INFORMS, vol. 35(2), pages 291-305, April.
    8. B. Avi-Itzhak, 1965. "A Sequence of Service Stations with Arbitrary Input and Regular Service Times," Management Science, INFORMS, vol. 11(5), pages 565-571, March.
    9. Galit B. Yom-Tov & Avishai Mandelbaum, 2014. "Erlang-R: A Time-Varying Queue with Reentrant Customers, in Support of Healthcare Staffing," Manufacturing & Service Operations Management, INFORMS, vol. 16(2), pages 283-299, May.
    10. Benjamin Avi-Itzhak & Hanoch Levy, 1995. "A Sequence of Servers with Arbitrary Input and Regular Service Times Revisited," Management Science, INFORMS, vol. 41(6), pages 1039-1047, June.
    11. T. Tolio & S.B. Gershwin, 1998. "Throughput estimation in cyclic queueing networks with blocking," Annals of Operations Research, Springer, vol. 79(0), pages 207-229, January.
    12. Osorio, Carolina & Bierlaire, Michel, 2009. "An analytic finite capacity queueing network model capturing the propagation of congestion and blocking," European Journal of Operational Research, Elsevier, vol. 196(3), pages 996-1007, August.
    13. Ward Whitt, 2006. "Fluid Models for Multiserver Queues with Abandonments," Operations Research, INFORMS, vol. 54(1), pages 37-54, February.
    14. Alexandre Brandwajn & Yung-Li Lily Jow, 1988. "An Approximation Method for Tandem Queues with Blocking," Operations Research, INFORMS, vol. 36(1), pages 73-83, February.
    15. N. U. Prabhu, 1967. "Transient Behaviour of a Tandem Queue," Management Science, INFORMS, vol. 13(9), pages 631-639, May.
    16. Ward Whitt, 2004. "Efficiency-Driven Heavy-Traffic Approximations for Many-Server Queues with Abandonments," Management Science, INFORMS, vol. 50(10), pages 1449-1461, October.
    17. Frederick S. Hillier & Ronald W. Boling, 1967. "Finite Queues in Series with Exponential or Erlang Service Times—A Numerical Approach," Operations Research, INFORMS, vol. 15(2), pages 286-303, April.
    18. James S. Vandergraft, 1983. "A Fluid Flow Model of Networks of Queues," Management Science, INFORMS, vol. 29(10), pages 1198-1208, October.
    19. Yutaka Takahashi & Hideo Miyahara & Toshiharu Hasegawa, 1980. "An Approximation Method for Open Restricted Queueing Networks," Operations Research, INFORMS, vol. 28(3-part-i), pages 594-602, June.
    20. Izack Cohen & Avishai Mandelbaum & Noa Zychlinski, 2014. "Minimizing mortality in a mass casualty event: fluid networks in support of modeling and staffing," IISE Transactions, Taylor & Francis Journals, vol. 46(7), pages 728-741.
    21. Robert C. Leachman & André Gascon, 1988. "A Heuristic Scheduling Policy for Multi-Item, Single-Machine Production Systems with Time-Varying, Stochastic Demands," Management Science, INFORMS, vol. 34(3), pages 377-390, March.
    22. Jamol Pender & Young Myoung Ko, 2017. "Approximations for the Queue Length Distributions of Time-Varying Many-Server Queues," INFORMS Journal on Computing, INFORMS, vol. 29(4), pages 688-704, November.
    23. Richard Conway & William Maxwell & John O. McClain & L. Joseph Thomas, 1988. "The Role of Work-in-Process Inventory in Serial Production Lines," Operations Research, INFORMS, vol. 36(2), pages 229-241, April.
    24. Ma, Ni & Whitt, Ward, 2016. "Efficient simulation of non-Poisson non-stationary point processes to study queueing approximations," Statistics & Probability Letters, Elsevier, vol. 109(C), pages 202-207.
    25. William Millhiser & Apostolos Burnetas, 2013. "Optimal admission control in series production systems with blocking," IISE Transactions, Taylor & Francis Journals, vol. 45(10), pages 1035-1047.
    26. Zohar Feldman & Avishai Mandelbaum & William A. Massey & Ward Whitt, 2008. "Staffing of Time-Varying Queues to Achieve Time-Stable Performance," Management Science, INFORMS, vol. 54(2), pages 324-338, February.
    27. Ward Whitt, 2013. "OM Forum —Offered Load Analysis for Staffing," Manufacturing & Service Operations Management, INFORMS, vol. 15(2), pages 166-169, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ward Whitt, 2018. "A broad view of queueing theory through one issue," Queueing Systems: Theory and Applications, Springer, vol. 89(1), pages 3-14, June.
    2. Eugene Furman & Alex Cressman & Saeha Shin & Alexey Kuznetsov & Fahad Razak & Amol Verma & Adam Diamant, 2021. "Prediction of personal protective equipment use in hospitals during COVID-19," Health Care Management Science, Springer, vol. 24(2), pages 439-453, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Noa Zychlinski, 2023. "Applications of fluid models in service operations management," Queueing Systems: Theory and Applications, Springer, vol. 103(1), pages 161-185, February.
    2. Noa Zychlinski & Avishai Mandelbaum & Petar Momčilović & Izack Cohen, 2020. "Bed Blocking in Hospitals Due to Scarce Capacity in Geriatric Institutions—Cost Minimization via Fluid Models," Manufacturing & Service Operations Management, INFORMS, vol. 22(2), pages 396-411, March.
    3. Papadopoulos, H. T. & Heavey, C., 1996. "Queueing theory in manufacturing systems analysis and design: A classification of models for production and transfer lines," European Journal of Operational Research, Elsevier, vol. 92(1), pages 1-27, July.
    4. Saied Samiedaluie & Vedat Verter, 2019. "The impact of specialization of hospitals on patient access to care; a queuing analysis with an application to a neurological hospital," Health Care Management Science, Springer, vol. 22(4), pages 709-726, December.
    5. Subba Rao, S. & Gunasekaran, A. & Goyal, S. K. & Martikainen, T., 1998. "Waiting line model applications in manufacturing," International Journal of Production Economics, Elsevier, vol. 54(1), pages 1-28, January.
    6. Osorio, Carolina & Wang, Carter, 2017. "On the analytical approximation of joint aggregate queue-length distributions for traffic networks: A stationary finite capacity Markovian network approach," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 305-339.
    7. Ryan Palmer & Martin Utley, 2020. "On the modelling and performance measurement of service networks with heterogeneous customers," Annals of Operations Research, Springer, vol. 293(1), pages 237-268, October.
    8. Wang, Haiyan & Olsen, Tava Lennon & Liu, Guiqing, 2018. "Service capacity competition with peak arrivals and delay sensitive customers," Omega, Elsevier, vol. 77(C), pages 80-95.
    9. Ward Whitt & Jingtong Zhao, 2017. "Many‐server loss models with non‐poisson time‐varying arrivals," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(3), pages 177-202, April.
    10. Ran Liu & Xiaolan Xie, 2018. "Physician Staffing for Emergency Departments with Time-Varying Demand," INFORMS Journal on Computing, INFORMS, vol. 30(3), pages 588-607, August.
    11. Defraeye, Mieke & Van Nieuwenhuyse, Inneke, 2016. "Staffing and scheduling under nonstationary demand for service: A literature review," Omega, Elsevier, vol. 58(C), pages 4-25.
    12. Benjamin Avi-Itzhak & Hanoch Levy, 2001. "Buffer Requirements and Server Ordering in a Tandem Queue with Correlated Service Times," Mathematics of Operations Research, INFORMS, vol. 26(2), pages 358-374, May.
    13. A. Korhan Aras & Xinyun Chen & Yunan Liu, 2018. "Many-server Gaussian limits for overloaded non-Markovian queues with customer abandonment," Queueing Systems: Theory and Applications, Springer, vol. 89(1), pages 81-125, June.
    14. Palmer, Geraint I. & Harper, Paul R. & Knight, Vincent A., 2018. "Modelling deadlock in open restricted queueing networks," European Journal of Operational Research, Elsevier, vol. 266(2), pages 609-621.
    15. Sachs, F.E. & Helber, S. & Kiesmüller, G.P., 2022. "Evaluation of Unreliable Flow Lines with Limited Buffer Capacities and Spare Part Provisioning," European Journal of Operational Research, Elsevier, vol. 302(2), pages 544-559.
    16. Kawai, Yosuke & Takagi, Hideaki, 2015. "Fluid approximation analysis of a call center model with time-varying arrivals and after-call work," Operations Research Perspectives, Elsevier, vol. 2(C), pages 81-96.
    17. Galit B. Yom-Tov & Avishai Mandelbaum, 2014. "Erlang-R: A Time-Varying Queue with Reentrant Customers, in Support of Healthcare Staffing," Manufacturing & Service Operations Management, INFORMS, vol. 16(2), pages 283-299, May.
    18. Liu, Yunan & Whitt, Ward, 2017. "Stabilizing performance in a service system with time-varying arrivals and customer feedback," European Journal of Operational Research, Elsevier, vol. 256(2), pages 473-486.
    19. Avishai Mandelbaum & Petar Momčilović, 2017. "Personalized queues: the customer view, via a fluid model of serving least-patient first," Queueing Systems: Theory and Applications, Springer, vol. 87(1), pages 23-53, October.
    20. Rouba Ibrahim & Mor Armony & Achal Bassamboo, 2017. "Does the Past Predict the Future? The Case of Delay Announcements in Service Systems," Management Science, INFORMS, vol. 63(6), pages 1762-1780, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:queues:v:89:y:2018:i:1:d:10.1007_s11134-018-9578-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.