IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v304y2023i1p42-56.html
   My bibliography  Save this article

A stochastic inventory model of COVID-19 and robust, real-time identification of carriers at large and infection rate via asymptotic laws

Author

Listed:
  • Tsiligianni, Christiana
  • Tsiligiannis, Aristeides
  • Tsiliyannis, Christos

Abstract

A critical operations management problem in the ongoing COVID-19 pandemic is cognizance of (a) the number of all carriers at large (CaL) conveying the SARS-CoV-2, including asymptomatic ones and (b) the infection rate (IR). Both are random and unobservable, affecting the spread of the disease, patient arrivals to health care units (HCUs) and the number of deaths. A novel, inventory perspective of COVID-19 is proposed, with random inflow, random losses and retrials (recurrent cases) and delayed/distributed exit, with randomly varying fractions of the exit distribution. A minimal construal, it enables representation of COVID-19 evolution with close fit of national incidence profiles, including single and multiple pattern outbreaks, oscillatory, periodic or non-periodic evolution, followed by retraction, leveling off, or strong resurgence. Furthermore, based on asymptotic laws, the minimum number of variables that must be monitored for identifying CaL and IR is determined and a real-time identification method is presented. The method is data-driven, utilizing the entry rate to HCUs and scaled, or dimensionless variables, including the mean residence time of symptomatic carriers in CaL and the mean residence time in CaL of patients entering HCUs. As manifested by several robust case studies of national COVID-19 incidence profiles, it provides efficient identification in real-time under unbiased monitoring error, without relying on any model. The propagation factor, a stochastic process, is reconstructed from the identified trajectories of CaL and IR, enabling evaluation of control measures. The results are useful towards the design of policies restricting COVID-19 and encumbrance to HCUs and mitigating economic contraction.

Suggested Citation

  • Tsiligianni, Christiana & Tsiligiannis, Aristeides & Tsiliyannis, Christos, 2023. "A stochastic inventory model of COVID-19 and robust, real-time identification of carriers at large and infection rate via asymptotic laws," European Journal of Operational Research, Elsevier, vol. 304(1), pages 42-56.
  • Handle: RePEc:eee:ejores:v:304:y:2023:i:1:p:42-56
    DOI: 10.1016/j.ejor.2021.12.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221721010936
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2021.12.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrew Lesniewski, 2020. "Epidemic control via stochastic optimal control," Papers 2004.06680, arXiv.org, revised May 2020.
    2. Schwarz, Justus Arne & Selinka, Gregor & Stolletz, Raik, 2016. "Performance analysis of time-dependent queueing systems: Survey and classification," Omega, Elsevier, vol. 63(C), pages 170-189.
    3. Cleo Anastassopoulou & Lucia Russo & Athanasios Tsakris & Constantinos Siettos, 2020. "Data-based analysis, modelling and forecasting of the COVID-19 outbreak," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-21, March.
    4. Jun Kim & Sung Ha, 2012. "Advanced workforce management for effective customer services," Quality & Quantity: International Journal of Methodology, Springer, vol. 46(6), pages 1715-1726, October.
    5. Michael te Vrugt & Jens Bickmann & Raphael Wittkowski, 2020. "Effects of social distancing and isolation on epidemic spreading modeled via dynamical density functional theory," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    6. Sheryl L. Chang & Nathan Harding & Cameron Zachreson & Oliver M. Cliff & Mikhail Prokopenko, 2020. "Modelling transmission and control of the COVID-19 pandemic in Australia," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    7. Alan Cobham, 1954. "Priority Assignment in Waiting Line Problems," Operations Research, INFORMS, vol. 2(1), pages 70-76, February.
    8. Dietz, Dennis C., 2011. "Practical scheduling for call center operations," Omega, Elsevier, vol. 39(5), pages 550-557, October.
    9. Tsiliyannis, Christos Aristeides, 2018. "Markov chain modeling and forecasting of product returns in remanufacturing based on stock mean-age," European Journal of Operational Research, Elsevier, vol. 271(2), pages 474-489.
    10. Willis, Mark J. & Díaz, Victor Hugo Grisales & Prado-Rubio, Oscar Andrés & von Stosch, Moritz, 2020. "Insights into the dynamics and control of COVID-19 infection rates," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    11. Bertsimas, Dimitris & Doan, Xuan Vinh, 2010. "Robust and data-driven approaches to call centers," European Journal of Operational Research, Elsevier, vol. 207(2), pages 1072-1085, December.
    12. William S. Jewell, 1967. "A Simple Proof of: L = λ W," Operations Research, INFORMS, vol. 15(6), pages 1109-1116, December.
    13. Ahumada, Hildegart & Espina, Santos & Navajas, Fernando H., 2020. "COVID-19 with uncertain phases: estimation issues with an illustration for Argentina," MPRA Paper 101466, University Library of Munich, Germany.
    14. Suzanne Treville & Norman Schürhoff & Lenos Trigeorgis & Benjamin Avanzi, 2014. "Optimal Sourcing and Lead-Time Reduction under Evolutionary Demand Risk," Production and Operations Management, Production and Operations Management Society, vol. 23(12), pages 2103-2117, December.
    15. Zohar Feldman & Avishai Mandelbaum & William A. Massey & Ward Whitt, 2008. "Staffing of Time-Varying Queues to Achieve Time-Stable Performance," Management Science, INFORMS, vol. 54(2), pages 324-338, February.
    16. Song-Hee Kim & Ward Whitt, 2013. "Statistical Analysis with Little's Law," Operations Research, INFORMS, vol. 61(4), pages 1030-1045, August.
    17. Pastore Y Piontti, Ana & Gomes, Marcelo Ferreira Da Costa & Samay, Nicole & Perra, Nicola & Vespignani, Alessandro, 2014. "The infection tree of global epidemics," Network Science, Cambridge University Press, vol. 2(1), pages 132-137, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gregor Selinka & Raik Stolletz & Thomas I. Maindl, 2022. "Performance Approximation for Time-Dependent Queues with Generally Distributed Abandonments," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 20-38, January.
    2. Defraeye, Mieke & Van Nieuwenhuyse, Inneke, 2016. "Staffing and scheduling under nonstationary demand for service: A literature review," Omega, Elsevier, vol. 58(C), pages 4-25.
    3. Schwarz, Justus Arne & Selinka, Gregor & Stolletz, Raik, 2016. "Performance analysis of time-dependent queueing systems: Survey and classification," Omega, Elsevier, vol. 63(C), pages 170-189.
    4. Chen, Kexin & Pun, Chi Seng & Wong, Hoi Ying, 2023. "Efficient social distancing during the COVID-19 pandemic: Integrating economic and public health considerations," European Journal of Operational Research, Elsevier, vol. 304(1), pages 84-98.
    5. Andersen, Anders Reenberg & Nielsen, Bo Friis & Reinhardt, Line Blander & Stidsen, Thomas Riis, 2019. "Staff optimization for time-dependent acute patient flow," European Journal of Operational Research, Elsevier, vol. 272(1), pages 94-105.
    6. Daniel K Sewell & Aaron Miller & for the CDC MInD-Healthcare Program, 2020. "Simulation-free estimation of an individual-based SEIR model for evaluating nonpharmaceutical interventions with an application to COVID-19 in the District of Columbia," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-18, November.
    7. Nathan H. Schumaker & Sydney M. Watkins, 2021. "Adding Space to Disease Models: A Case Study with COVID-19 in Oregon, USA," Land, MDPI, vol. 10(4), pages 1-13, April.
    8. Gregory L Watson & Di Xiong & Lu Zhang & Joseph A Zoller & John Shamshoian & Phillip Sundin & Teresa Bufford & Anne W Rimoin & Marc A Suchard & Christina M Ramirez, 2021. "Pandemic velocity: Forecasting COVID-19 in the US with a machine learning & Bayesian time series compartmental model," PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-20, March.
    9. Li, Dongmin & Hu, Qingpei & Wang, Lujia & Yu, Dan, 2019. "Statistical inference for Mt/G/Infinity queueing systems under incomplete observations," European Journal of Operational Research, Elsevier, vol. 279(3), pages 882-901.
    10. Shailesh Bharati & Rahul Batra, 2021. "How Misuse of Statistics Can Spread Misinformation: A Study of Misrepresentation of COVID-19 Data," Papers 2102.07198, arXiv.org.
    11. Nguyen, Tri K. & Hoang, Nam H. & Currie, Graham & Vu, Hai L., 2022. "Enhancing Covid-19 virus spread modeling using an activity travel model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 161(C), pages 186-199.
    12. William A. Massey & Jamol Pender, 2018. "Dynamic rate Erlang-A queues," Queueing Systems: Theory and Applications, Springer, vol. 89(1), pages 127-164, June.
    13. Pei, Zhi & Dai, Xu & Yuan, Yilun & Du, Rui & Liu, Changchun, 2021. "Managing price and fleet size for courier service with shared drones," Omega, Elsevier, vol. 104(C).
    14. Rouba Ibrahim & Ward Whitt, 2011. "Wait-Time Predictors for Customer Service Systems with Time-Varying Demand and Capacity," Operations Research, INFORMS, vol. 59(5), pages 1106-1118, October.
    15. Thomas Kittsteiner & Benny Moldovanu, 2005. "Priority Auctions and Queue Disciplines That Depend on Processing Time," Management Science, INFORMS, vol. 51(2), pages 236-248, February.
    16. Zhang, Abraham & Wang, Jason X. & Farooque, Muhammad & Wang, Yulan & Choi, Tsan-Ming, 2021. "Multi-dimensional circular supply chain management: A comparative review of the state-of-the-art practices and research," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
    17. Wu, Zhengping & Zhai, Xin & Liu, Zhongyi, 2015. "The inventory billboard effect on the lead-time decision," International Journal of Production Economics, Elsevier, vol. 170(PA), pages 45-53.
    18. Niyirora, Jerome & Zhuang, Jun, 2017. "Fluid approximations and control of queues in emergency departments," European Journal of Operational Research, Elsevier, vol. 261(3), pages 1110-1124.
    19. Xi Chen & Dave Worthington, 2017. "Staffing of time-varying queues using a geometric discrete time modelling approach," Annals of Operations Research, Springer, vol. 252(1), pages 63-84, May.
    20. Achal Bassamboo & Assaf Zeevi, 2009. "On a Data-Driven Method for Staffing Large Call Centers," Operations Research, INFORMS, vol. 57(3), pages 714-726, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:304:y:2023:i:1:p:42-56. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.