Forecasting highly persistent time series with bounded spectrum processes
Author
Abstract
Suggested Citation
DOI: 10.1007/s00362-022-01321-z
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- William Rea & Marco Reale & Jennifer Brown, 2011. "Long memory in temperature reconstructions," Climatic Change, Springer, vol. 107(3), pages 247-265, August.
- Tommaso Proietti, 2016. "Component-wise Representations of Long-memory Models and Volatility Prediction," Journal of Financial Econometrics, Oxford University Press, vol. 14(4), pages 668-692.
- Granger, Clive W. J. & Hyung, Namwon, 2004. "Occasional structural breaks and long memory with an application to the S&P 500 absolute stock returns," Journal of Empirical Finance, Elsevier, vol. 11(3), pages 399-421, June.
- Shitan, Mahendran & Peiris, Shelton, 2009. "On properties of the second order generalized autoregressive GAR(2) model with index," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(2), pages 367-377.
- Uwe Hassler & Mehdi Hosseinkouchack, 2020. "Harmonically Weighted Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(1), pages 41-66, January.
- Perron, Pierre & Qu, Zhongjun, 2010.
"Long-Memory and Level Shifts in the Volatility of Stock Market Return Indices,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 28(2), pages 275-290.
- Pierre Perron & Zhongjun Qu, 2008. "Long-Memory and Level Shifts in the Volatility of Stock Market Return Indices," Boston University - Department of Economics - Working Papers Series wp2008-004, Boston University - Department of Economics.
- John K. Dagsvik & Mariachiara Fortuna & Sigmund Hov Moen, 2020. "How does temperature vary over time?: evidence on the stationary and fractal nature of temperature fluctuations," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 883-908, June.
- Baillie, Richard T. & Chung, Sang-Kuck, 2002. "Modeling and forecasting from trend-stationary long memory models with applications to climatology," International Journal of Forecasting, Elsevier, vol. 18(2), pages 215-226.
- Robinson, Peter M. & Velasco, Carlos, 2000. "Whittle pseudo-maximum likelihood estimation for nonstationary time series," LSE Research Online Documents on Economics 2273, London School of Economics and Political Science, LSE Library.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Luis Alberiko & OlaOluwa S. Yaya & Olarenwaju I. Shittu, 2015. "Fractional integration and asymmetric volatility in european, asian and american bull and bear markets. Applications to high frequency stock data," NCID Working Papers 07/2015, Navarra Center for International Development, University of Navarra.
- Javier Haulde & Morten Ørregaard Nielsen, 2022.
"Fractional integration and cointegration,"
CREATES Research Papers
2022-02, Department of Economics and Business Economics, Aarhus University.
- Javier Hualde & Morten {O}rregaard Nielsen, 2022. "Fractional integration and cointegration," Papers 2211.10235, arXiv.org.
- Ata Assaf & Luis Alberiko Gil-Alana & Khaled Mokni, 2022. "True or spurious long memory in the cryptocurrency markets: evidence from a multivariate test and other Whittle estimation methods," Empirical Economics, Springer, vol. 63(3), pages 1543-1570, September.
- Sibbertsen, Philipp & Leschinski, Christian & Busch, Marie, 2018.
"A multivariate test against spurious long memory,"
Journal of Econometrics, Elsevier, vol. 203(1), pages 33-49.
- Sibbertsen, Philipp & Leschinski, Christian & Holzhausen, Marie, 2015. "A Multivariate Test Against Spurious Long Memory," Hannover Economic Papers (HEP) dp-547, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
- Luis A. Gil-Alana & Laura Sauci, 2019. "Temperatures across Europe: evidence of time trends," Climatic Change, Springer, vol. 157(3), pages 355-364, December.
- Rea, William & Reale, Marco & Brown, Jennifer & Oxley, Les, 2011. "Long memory or shifting means in geophysical time series?," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(7), pages 1441-1453.
- Claudio Morana & Giacomo Sbrana, 2017.
"Temperature Anomalies, Radiative Forcing and ENSO,"
Working Papers
2017.09, Fondazione Eni Enrico Mattei.
- Morana, Claudio & Sbrana, Giacomo, 2017. "Temperature Anomalies, Radiative Forcing and ENSO," MITP: Mitigation, Innovation and Transformation Pathways 253732, Fondazione Eni Enrico Mattei (FEEM).
- Claudio, Morana & Giacomo, Sbrana, 2017. "Temperature anomalies, radiative forcing and ENSO," Working Papers 361, University of Milano-Bicocca, Department of Economics, revised 10 Feb 2017.
- Claudio Morana & Giacomo Sbrana, 2017. "Temperature anomalies, radiative forcing and ENSO," Working Paper series 17-06, Rimini Centre for Economic Analysis.
- Guglielmo Caporale & Luis Gil-Alana, 2014.
"Fractional integration and cointegration in US financial time series data,"
Empirical Economics, Springer, vol. 47(4), pages 1389-1410, December.
- Guglielmo Maria Caporale & Luis A. Gil-Alana, 2011. "Fractional Integration and Cointegration in US Financial Time Series Data," CESifo Working Paper Series 3416, CESifo.
- Luis A. Gil-Alana & Guglielmo Maria Caporale, 2012. "Fractional Integration and Cointegration in US Financial Time Series Data," Faculty Working Papers 12/12, School of Economics and Business Administration, University of Navarra.
- Guglielmo Maria Caporale & Luis A. Gil-Alana, 2011. "Fractional Integration and Cointegration in US Financial Time Series Data," Discussion Papers of DIW Berlin 1116, DIW Berlin, German Institute for Economic Research.
- Caporale, Guglielmo Maria & Gil-Alana, Luis & Plastun, Alex, 2018.
"Is market fear persistent? A long-memory analysis,"
Finance Research Letters, Elsevier, vol. 27(C), pages 140-147.
- Guglielmo Maria Caporale & Luis A. Gil-Alana & Alex Plastun, 2017. "Is Market Fear Persistent? A Long-Memory Analysis," Discussion Papers of DIW Berlin 1670, DIW Berlin, German Institute for Economic Research.
- Guglielmo Maria Caporale & Luis Gil-Alana & Alex Plastun, 2017. "Is Market Fear Persistent? A Long-Memory Analysis," CESifo Working Paper Series 6534, CESifo.
- Shi, Yanlin & Ho, Kin-Yip, 2015. "Long memory and regime switching: A simulation study on the Markov regime-switching ARFIMA model," Journal of Banking & Finance, Elsevier, vol. 61(S2), pages 189-204.
- Todea, Alexandru, 2016. "Cross-correlations between volatility, volatility persistence and stock market integration: the case of emergent stock markets," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 208-215.
- Kai Wenger & Christian Leschinski & Philipp Sibbertsen, 2019.
"Change-in-mean tests in long-memory time series: a review of recent developments,"
AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(2), pages 237-256, June.
- Wenger, Kai & Leschinski, Christian & Sibbertsen, Philipp, 2017. "Change-in-Mean Tests in Long-memory Time Series: A Review of Recent Developments," Hannover Economic Papers (HEP) dp-598, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
- Marie Busch & Philipp Sibbertsen, 2018.
"An Overview of Modified Semiparametric Memory Estimation Methods,"
Econometrics, MDPI, vol. 6(1), pages 1-21, March.
- Busch, Marie & Sibbertsen, Philipp, 2018. "An Overview of Modified Semiparametric Memory Estimation Methods," Hannover Economic Papers (HEP) dp-628, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
- Adam McCloskey, 2013.
"Estimation of the long-memory stochastic volatility model parameters that is robust to level shifts and deterministic trends,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 34(3), pages 285-301, May.
- Adam McCloskey, 2012. "Estimation of the Long-Memory Stochastic Volatility Model Parameters that is Robust to Level Shifts and Deterministic Trends," Working Papers 2012-17, Brown University, Department of Economics.
- Mccloskey, Adam & Perron, Pierre, 2013.
"Memory Parameter Estimation In The Presence Of Level Shifts And Deterministic Trends,"
Econometric Theory, Cambridge University Press, vol. 29(6), pages 1196-1237, December.
- Pierre Perron & Adam McCloskey, 2010. "Memory Parameter Estimation in the Presence of Level Shifts and Deterministic Trends," Boston University - Department of Economics - Working Papers Series WP2010-048, Boston University - Department of Economics.
- Adam McCloskey & Pierre Perron, 2012. "Memory Parameter Estimation in the Presence of Level Shifts and Deterministic Trends," Working Papers 2012-15, Brown University, Department of Economics.
- Guglielmo Maria Caporale & Luis Alberiko Gil-Alana & Robert Mudida, 2015.
"Testing the Marshall–Lerner Condition in Kenya,"
South African Journal of Economics, Economic Society of South Africa, vol. 83(2), pages 253-268, June.
- Luis Alberiko Gil-Alaña & Guiglielmo Maria Caporale & Robert Mudida, 2012. "Testing the Marshall-Lerner condition in Kenya," NCID Working Papers 09/2012, Navarra Center for International Development, University of Navarra.
- Guglielmo Maria Caporale & Luis A. Gil-Alana & Robert Mudida, 2012. "Testing the Marshall-Lerner Condition in Kenya," Discussion Papers of DIW Berlin 1247, DIW Berlin, German Institute for Economic Research.
- Davide Delle Monache & Stefano Grassi & Paolo Santucci de Magistris, 2017. "Does the ARFIMA really shift?," CREATES Research Papers 2017-16, Department of Economics and Business Economics, Aarhus University.
- Renzo Pardo Figueroa & Gabriel Rodríguez, 2014. "Distinguishing between True and Spurious Long Memory in the Volatility of Stock Market Returns in Latin America," Documentos de Trabajo / Working Papers 2014-395, Departamento de Economía - Pontificia Universidad Católica del Perú.
- Uwe Hassler & Marc-Oliver Pohle, 2019. "Forecasting under Long Memory and Nonstationarity," Papers 1910.08202, arXiv.org.
- Grassi, Stefano & Santucci de Magistris, Paolo, 2014.
"When long memory meets the Kalman filter: A comparative study,"
Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 301-319.
- Stefano Grassi & Paolo Santucci de Magistris, 2011. "When Long Memory Meets the Kalman Filter: A Comparative Study," CREATES Research Papers 2011-14, Department of Economics and Business Economics, Aarhus University.
More about this item
Keywords
Fractional processes; Long memory; Non stationarity; Bounded spectrum; Forecasting; Climate time series;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:64:y:2023:i:1:d:10.1007_s00362-022-01321-z. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.