Estimation of the Long-Memory Stochastic Volatility Model Parameters that is Robust to Level Shifts and Deterministic Trends
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Adam McCloskey, 2013. "Estimation of the long-memory stochastic volatility model parameters that is robust to level shifts and deterministic trends," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(3), pages 285-301, May.
References listed on IDEAS
- George Kapetanios & Fotis Papailias, 2011.
"Block Bootstrap and Long Memory,"
Working Papers
679, Queen Mary University of London, School of Economics and Finance.
- George Kapetanios & Fotis Papailias, 2011. "Block Bootstrap and Long Memory," Working Papers 679, Queen Mary University of London, School of Economics and Finance.
- Per Frederiksen & Morten Orregaard Nielsen, 2008.
"Bias-Reduced Estimation of Long-Memory Stochastic Volatility,"
Journal of Financial Econometrics, Oxford University Press, vol. 6(4), pages 496-512, Fall.
- Per Frederiksen & Morten Ørregaard Nielsen, 2008. "Bias-reduced estimation of long memory stochastic volatility," CREATES Research Papers 2008-35, Department of Economics and Business Economics, Aarhus University.
- Perez, Ana & Ruiz, Esther, 2001.
"Finite sample properties of a QML estimator of stochastic volatility models with long memory,"
Economics Letters, Elsevier, vol. 70(2), pages 157-164, February.
- Pérez, Ana, 1999. "Finite sample properties of a QML estimator of stochastic volatility models with long memory," DES - Working Papers. Statistics and Econometrics. WS 6360, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Adam McCloskey & Jonathan B. Hill, 2017. "Parameter Estimation Robust to Low-Frequency Contamination," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(4), pages 598-610, October.
- Deo, Rohit & Hurvich, Clifford & Lu, Yi, 2006.
"Forecasting realized volatility using a long-memory stochastic volatility model: estimation, prediction and seasonal adjustment,"
Journal of Econometrics, Elsevier, vol. 131(1-2), pages 29-58.
- Rohit Deo & Clifford Hurvich & Yi Lu, 2005. "Forecasting Realized Volatility Using a Long Memory Stochastic Volatility Model: Estimation, Prediction and Seasonal Adjustment," Econometrics 0501002, University Library of Munich, Germany.
- Fabrizio Iacone, 2010. "Local Whittle estimation of the memory parameter in presence of deterministic components," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(1), pages 37-49, January.
- Breidt, F. Jay & Crato, Nuno & de Lima, Pedro, 1998. "The detection and estimation of long memory in stochastic volatility," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 325-348.
- Clifford M. Hurvich & Rohit Deo & Julia Brodsky, 1998. "The mean squared error of Geweke and Porter‐Hudak's estimator of the memory parameter of a long‐memory time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 19(1), pages 19-46, January.
- D. S. Poskitt, 2008.
"Properties of the Sieve Bootstrap for Fractionally Integrated and Non‐Invertible Processes,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 29(2), pages 224-250, March.
- D. S. Poskitt, 2006. "Properties of the Sieve Bootstrap for Fractionally Integrated and Non-Invertible Processes," Monash Econometrics and Business Statistics Working Papers 12/06, Monash University, Department of Econometrics and Business Statistics.
- Velasco, Carlos, 1999. "Non-stationary log-periodogram regression," Journal of Econometrics, Elsevier, vol. 91(2), pages 325-371, August.
- Granger, Clive W. J. & Hyung, Namwon, 2004. "Occasional structural breaks and long memory with an application to the S&P 500 absolute stock returns," Journal of Empirical Finance, Elsevier, vol. 11(3), pages 399-421, June.
- Diebold, Francis X. & Inoue, Atsushi, 2001.
"Long memory and regime switching,"
Journal of Econometrics, Elsevier, vol. 105(1), pages 131-159, November.
- Francis X. Diebold & Atsushi Inoue, 2000. "Long Memory and Regime Switching," NBER Technical Working Papers 0264, National Bureau of Economic Research, Inc.
- Zhongjun Qu, 2011.
"A Test Against Spurious Long Memory,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(3), pages 423-438, July.
- Qu, Zhongjun, 2011. "A Test Against Spurious Long Memory," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(3), pages 423-438.
- Zhongjun Qu, 2010. "A Test Against Spurious Long Memory," Boston University - Department of Economics - Working Papers Series WP2010-051, Boston University - Department of Economics.
- Sun, Yixiao & Phillips, Peter C. B., 2003.
"Nonlinear log-periodogram regression for perturbed fractional processes,"
Journal of Econometrics, Elsevier, vol. 115(2), pages 355-389, August.
- Yixiao Sun & Peter C.B. Phillips, 2002. "Nonlinear Log-Periodogram Regression for Perturbed Fractional Processes," Cowles Foundation Discussion Papers 1366, Cowles Foundation for Research in Economics, Yale University.
- Perron, Pierre & Qu, Zhongjun, 2010.
"Long-Memory and Level Shifts in the Volatility of Stock Market Return Indices,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 28(2), pages 275-290.
- Pierre Perron & Zhongjun Qu, 2008. "Long-Memory and Level Shifts in the Volatility of Stock Market Return Indices," Boston University - Department of Economics - Working Papers Series wp2008-004, Boston University - Department of Economics.
- Clifford M. Hurvich & Eric Moulines & Philippe Soulier, 2005.
"Estimating Long Memory in Volatility,"
Econometrica, Econometric Society, vol. 73(4), pages 1283-1328, July.
- Clifford Hurvich & Eric Moulines & Philippe Soulier, 2004. "Estimating Long Memory in Volatility," Econometrics 0412006, University Library of Munich, Germany.
- Deo, Rohit S. & Hurvich, Clifford M., 2001. "On The Log Periodogram Regression Estimator Of The Memory Parameter In Long Memory Stochastic Volatility Models," Econometric Theory, Cambridge University Press, vol. 17(4), pages 686-710, August.
- Mccloskey, Adam & Perron, Pierre, 2013.
"Memory Parameter Estimation In The Presence Of Level Shifts And Deterministic Trends,"
Econometric Theory, Cambridge University Press, vol. 29(6), pages 1196-1237, December.
- Pierre Perron & Adam McCloskey, 2010. "Memory Parameter Estimation in the Presence of Level Shifts and Deterministic Trends," Boston University - Department of Economics - Working Papers Series WP2010-048, Boston University - Department of Economics.
- Adam McCloskey & Pierre Perron, 2012. "Memory Parameter Estimation in the Presence of Level Shifts and Deterministic Trends," Working Papers 2012-15, Brown University, Department of Economics.
- Clifford M. Hurvich & Bonnie K. Ray, 1995. "Estimation Of The Memory Parameter For Nonstationary Or Noninvertible Fractionally Integrated Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 16(1), pages 17-41, January.
- Robinson, Peter M., 1997. "Large-sample inference for nonparametric regression with dependent errors," LSE Research Online Documents on Economics 302, London School of Economics and Political Science, LSE Library.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Arteche, Josu & García-Enríquez, Javier, 2017. "Singular Spectrum Analysis for signal extraction in Stochastic Volatility models," Econometrics and Statistics, Elsevier, vol. 1(C), pages 85-98.
- Hou, Jie & Perron, Pierre, 2014. "Modified local Whittle estimator for long memory processes in the presence of low frequency (and other) contaminations," Journal of Econometrics, Elsevier, vol. 182(2), pages 309-328.
- Marie Busch & Philipp Sibbertsen, 2018.
"An Overview of Modified Semiparametric Memory Estimation Methods,"
Econometrics, MDPI, vol. 6(1), pages 1-21, March.
- Busch, Marie & Sibbertsen, Philipp, 2018. "An Overview of Modified Semiparametric Memory Estimation Methods," Hannover Economic Papers (HEP) dp-628, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
- Christensen, Bent Jesper & Varneskov, Rasmus Tangsgaard, 2017.
"Medium band least squares estimation of fractional cointegration in the presence of low-frequency contamination,"
Journal of Econometrics, Elsevier, vol. 197(2), pages 218-244.
- Bent Jesper Christensen & Rasmus T. Varneskov, 2015. "Medium Band Least Squares Estimation of Fractional Cointegration in the Presence of Low-Frequency Contamination," CREATES Research Papers 2015-25, Department of Economics and Business Economics, Aarhus University.
- Heni Boubaker, 2016. "A Comparative Study of the Performance of Estimating Long-Memory Parameter Using Wavelet-Based Entropies," Computational Economics, Springer;Society for Computational Economics, vol. 48(4), pages 693-731, December.
- Dalla, Violetta & Giraitis, Liudas & Robinson, Peter M., 2020. "Asymptotic theory for time series with changing mean and variance," Journal of Econometrics, Elsevier, vol. 219(2), pages 281-313.
- Matei Demetrescu & Mehdi Hosseinkouchack, 2022. "Autoregressive spectral estimates under ignored changes in the mean," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(2), pages 329-340, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Javier Haulde & Morten Ørregaard Nielsen, 2022.
"Fractional integration and cointegration,"
CREATES Research Papers
2022-02, Department of Economics and Business Economics, Aarhus University.
- Javier Hualde & Morten {O}rregaard Nielsen, 2022. "Fractional integration and cointegration," Papers 2211.10235, arXiv.org.
- Christensen, Bent Jesper & Varneskov, Rasmus Tangsgaard, 2017.
"Medium band least squares estimation of fractional cointegration in the presence of low-frequency contamination,"
Journal of Econometrics, Elsevier, vol. 197(2), pages 218-244.
- Bent Jesper Christensen & Rasmus T. Varneskov, 2015. "Medium Band Least Squares Estimation of Fractional Cointegration in the Presence of Low-Frequency Contamination," CREATES Research Papers 2015-25, Department of Economics and Business Economics, Aarhus University.
- Marie Busch & Philipp Sibbertsen, 2018.
"An Overview of Modified Semiparametric Memory Estimation Methods,"
Econometrics, MDPI, vol. 6(1), pages 1-21, March.
- Busch, Marie & Sibbertsen, Philipp, 2018. "An Overview of Modified Semiparametric Memory Estimation Methods," Hannover Economic Papers (HEP) dp-628, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
- Mccloskey, Adam & Perron, Pierre, 2013.
"Memory Parameter Estimation In The Presence Of Level Shifts And Deterministic Trends,"
Econometric Theory, Cambridge University Press, vol. 29(6), pages 1196-1237, December.
- Pierre Perron & Adam McCloskey, 2010. "Memory Parameter Estimation in the Presence of Level Shifts and Deterministic Trends," Boston University - Department of Economics - Working Papers Series WP2010-048, Boston University - Department of Economics.
- Adam McCloskey & Pierre Perron, 2012. "Memory Parameter Estimation in the Presence of Level Shifts and Deterministic Trends," Working Papers 2012-15, Brown University, Department of Economics.
- Wenger, Kai & Leschinski, Christian & Sibbertsen, Philipp, 2017. "The Memory of Volatility," Hannover Economic Papers (HEP) dp-601, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
- Rasmus T. Varneskov & Pierre Perron, 2018.
"Combining long memory and level shifts in modelling and forecasting the volatility of asset returns,"
Quantitative Finance, Taylor & Francis Journals, vol. 18(3), pages 371-393, March.
- Rasmus Tangsgaard Varneskov & Pierre Perron, 2011. "Combining Long Memory and Level Shifts in Modeling and Forecasting the Volatility of Asset Returns," CREATES Research Papers 2011-26, Department of Economics and Business Economics, Aarhus University.
- Rasmus T. Varneskov & Pierre Perron, 2015. "Combining Long Memory and Level Shifts in Modeling and Forecasting the Volatility of Asset Returns," Boston University - Department of Economics - Working Papers Series wp2015-015, Boston University - Department of Economics.
- Pierre Perron & Rasmus T. Varneskov, 2011. "Combining Long Memory and Level Shifts in Modeling and Forecasting the Volatility of Asset Returns," Boston University - Department of Economics - Working Papers Series WP2011-050, Boston University - Department of Economics.
- Rasmus T. Varneskov & Pierre Perron, 2017. "Combining Long Memory and Level Shifts in Modeling and Forecasting the Volatility of Asset Returns," Boston University - Department of Economics - Working Papers Series WP2017-006, Boston University - Department of Economics.
- Hou, Jie & Perron, Pierre, 2014. "Modified local Whittle estimator for long memory processes in the presence of low frequency (and other) contaminations," Journal of Econometrics, Elsevier, vol. 182(2), pages 309-328.
- Ata Assaf & Luis Alberiko Gil-Alana & Khaled Mokni, 2022. "True or spurious long memory in the cryptocurrency markets: evidence from a multivariate test and other Whittle estimation methods," Empirical Economics, Springer, vol. 63(3), pages 1543-1570, September.
- Arteche, J., 2006.
"Semiparametric estimation in perturbed long memory series,"
Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2118-2141, December.
- Josu Arteche, 2006. "Semiparametric estimation in perturbed long memory series," Computing in Economics and Finance 2006 22, Society for Computational Economics.
- Perron, Pierre & Qu, Zhongjun, 2010.
"Long-Memory and Level Shifts in the Volatility of Stock Market Return Indices,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 28(2), pages 275-290.
- Pierre Perron & Zhongjun Qu, 2008. "Long-Memory and Level Shifts in the Volatility of Stock Market Return Indices," Boston University - Department of Economics - Working Papers Series wp2008-004, Boston University - Department of Economics.
- Matei Demetrescu & Mehdi Hosseinkouchack, 2022. "Autoregressive spectral estimates under ignored changes in the mean," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(2), pages 329-340, March.
- Leschinski, Christian & Sibbertsen, Philipp, 2018. "The Periodogram of Spurious Long-Memory Processes," Hannover Economic Papers (HEP) dp-632, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
- repec:ehu:biltok:5570 is not listed on IDEAS
- Renzo Pardo Figueroa & Gabriel Rodríguez, 2014. "Distinguishing between True and Spurious Long Memory in the Volatility of Stock Market Returns in Latin America," Documentos de Trabajo / Working Papers 2014-395, Departamento de Economía - Pontificia Universidad Católica del Perú.
- Grassi, Stefano & Santucci de Magistris, Paolo, 2014.
"When long memory meets the Kalman filter: A comparative study,"
Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 301-319.
- Stefano Grassi & Paolo Santucci de Magistris, 2011. "When Long Memory Meets the Kalman Filter: A Comparative Study," CREATES Research Papers 2011-14, Department of Economics and Business Economics, Aarhus University.
- Kunal Saha & Vinodh Madhavan & Chandrashekhar G. R. & David McMillan, 2020. "Pitfalls in long memory research," Cogent Economics & Finance, Taylor & Francis Journals, vol. 8(1), pages 1733280-173, January.
- Per Frederiksen & Frank S. Nielsen, 2008. "Estimation of Dynamic Models with Nonparametric Simulated Maximum Likelihood," CREATES Research Papers 2008-59, Department of Economics and Business Economics, Aarhus University.
- Arteche, Josu & García-Enríquez, Javier, 2017. "Singular Spectrum Analysis for signal extraction in Stochastic Volatility models," Econometrics and Statistics, Elsevier, vol. 1(C), pages 85-98.
- Rodríguez, Gabriel, 2017. "Modeling Latin-American stock and Forex markets volatility: Empirical application of a model with random level shifts and genuine long memory," The North American Journal of Economics and Finance, Elsevier, vol. 42(C), pages 393-420.
- Arteche, J., 2006.
"Semiparametric estimation in perturbed long memory series,"
Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2118-2141, December.
- Arteche González, Jesús María, 2005. "Semiparametric estimation in perturbed long memory series," BILTOKI 1134-8984, Universidad del País Vasco - Departamento de Economía Aplicada III (Econometría y Estadística).
- Josu Arteche, 2006. "Semiparametric estimation in perturbed long memory series," Computing in Economics and Finance 2006 22, Society for Computational Economics.
More about this item
Keywords
stochastic volatility; frequency domain estimation; robust estimation; spurious persistence; long-memory; level shifts; structural change; deterministic trends;All these keywords.
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2012-11-17 (Econometrics)
- NEP-ETS-2012-11-17 (Econometric Time Series)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bro:econwp:2012-17. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Brown Economics Webmaster (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.