IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v63y2022i1d10.1007_s00362-021-01261-0.html
   My bibliography  Save this article

A propensity score adjustment method for longitudinal time series models under nonignorable nonresponse

Author

Listed:
  • Zhan Liu

    (Hubei University)

  • Chun Yip Yau

    (Chinese University of Hong Kong)

Abstract

Analysis of data with nonignorable nonresponse is an important and challenging task. Although some methods have been developed for inference under nonignorable nonresponse, they are only available for independent data. In this paper, we develop a two-stage propensity score adjustment method to estimate longitudinal time series models with nonignorable missingness. In particular, the response probability or propensity score is first estimated via solving the mean score equation based on the observed sample. Then, the inverse propensity scores are employed to conduct weighting adjustment for a composite likelihood based estimation. The propensity scores weighted estimation equations are shown to yield consistent and asymptotic normal estimators. Simulation studies and application to AIDS Clinical Trial data are presented to evaluate the performance of the proposed method.

Suggested Citation

  • Zhan Liu & Chun Yip Yau, 2022. "A propensity score adjustment method for longitudinal time series models under nonignorable nonresponse," Statistical Papers, Springer, vol. 63(1), pages 317-342, February.
  • Handle: RePEc:spr:stpapr:v:63:y:2022:i:1:d:10.1007_s00362-021-01261-0
    DOI: 10.1007/s00362-021-01261-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-021-01261-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-021-01261-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lei Wang & Cuicui Qi & Jun Shao, 2019. "Model‐Assisted Regression Estimators for Longitudinal Data with Nonignorable Dropout," International Statistical Review, International Statistical Institute, vol. 87(S1), pages 121-138, May.
    2. Jae Kwang Kim & Jongho Im, 2014. "Propensity score adjustment with several follow-ups," Biometrika, Biometrika Trust, vol. 101(2), pages 439-448.
    3. Ming Zhou & Jae Kwang Kim, 2012. "An efficient method of estimation for longitudinal surveys with monotone missing data," Biometrika, Biometrika Trust, vol. 99(3), pages 631-648.
    4. Jun Shao & Lei Wang, 2016. "Semiparametric inverse propensity weighting for nonignorable missing data," Biometrika, Biometrika Trust, vol. 103(1), pages 175-187.
    5. Little, Roderick J A, 1988. "Missing-Data Adjustments in Large Surveys," Journal of Business & Economic Statistics, American Statistical Association, vol. 6(3), pages 287-296, July.
    6. Jae Kwang Kim, 2011. "Parametric fractional imputation for missing data analysis," Biometrika, Biometrika Trust, vol. 98(1), pages 119-132.
    7. Jiang, Depeng & Zhao, Puying & Tang, Niansheng, 2016. "A propensity score adjustment method for regression models with nonignorable missing covariates," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 98-119.
    8. Qin J. & Leung D. & Shao J., 2002. "Estimation With Survey Data Under Nonignorable Nonresponse or Informative Sampling," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 193-200, March.
    9. Weiping Zhang & Feiyue Xie & Jiaxin Tan, 2020. "A robust joint modeling approach for longitudinal data with informative dropouts," Computational Statistics, Springer, vol. 35(4), pages 1759-1783, December.
    10. Vasdekis, Vassilis G. S. & Rizopoulos, Dimitris & Moustaki, Irini, 2014. "Weighted pairwise likelihood estimation for a general class of random effects models," LSE Research Online Documents on Economics 56733, London School of Economics and Political Science, LSE Library.
    11. Joe, Harry & Lee, Youngjo, 2009. "On weighting of bivariate margins in pairwise likelihood," Journal of Multivariate Analysis, Elsevier, vol. 100(4), pages 670-685, April.
    12. Ying Yuan & Guosheng Yin, 2010. "Bayesian Quantile Regression for Longitudinal Studies with Nonignorable Missing Data," Biometrics, The International Biometric Society, vol. 66(1), pages 105-114, March.
    13. Little, Roderick J A, 1988. "Missing-Data Adjustments in Large Surveys: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 6(3), pages 300-301, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Ting & Wang, Lei, 2020. "Smoothed empirical likelihood inference and variable selection for quantile regression with nonignorable missing response," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    2. Wang, Lei & Zhao, Puying & Shao, Jun, 2021. "Dimension-reduced semiparametric estimation of distribution functions and quantiles with nonignorable nonresponse," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    3. Xianwen Ding & Jiandong Chen & Xueping Chen, 2020. "Regularized quantile regression for ultrahigh-dimensional data with nonignorable missing responses," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(5), pages 545-568, July.
    4. Joost Ginkel & Pieter Kroonenberg, 2014. "Using Generalized Procrustes Analysis for Multiple Imputation in Principal Component Analysis," Journal of Classification, Springer;The Classification Society, vol. 31(2), pages 242-269, July.
    5. Verbeek, M.J.C.M. & Nijman, T.E., 1992. "Incomplete panels and selection bias : A survey," Discussion Paper 1992-7, Tilburg University, Center for Economic Research.
    6. Gerko Vink & Laurence E. Frank & Jeroen Pannekoek & Stef Buuren, 2014. "Predictive mean matching imputation of semicontinuous variables," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 68(1), pages 61-90, February.
    7. Martin, Eisele & Zhu, Junyi, 2013. "Multiple imputation in a complex household survey - the German Panel on Household Finances (PHF): challenges and solutions," MPRA Paper 57666, University Library of Munich, Germany.
    8. Xiong, Ruoxuan & Pelger, Markus, 2023. "Large dimensional latent factor modeling with missing observations and applications to causal inference," Journal of Econometrics, Elsevier, vol. 233(1), pages 271-301.
    9. Dang, Hai-Anh H & Carletto, Calogero, 2022. "Recall Bias Revisited: Measure Farm Labor Using Mixed-Mode Surveys and Multiple Imputation," IZA Discussion Papers 14997, Institute of Labor Economics (IZA).
    10. Zhang, Jing & Wang, Qihua & Kang, Jian, 2020. "Feature screening under missing indicator imputation with non-ignorable missing response," Computational Statistics & Data Analysis, Elsevier, vol. 149(C).
    11. Daniel Schunk, 2007. "A Markov Chain Monte Carlo Multiple Imputation Procedure for Dealing with Item Nonresponse in the German SAVE Survey," MEA discussion paper series 07121, Munich Center for the Economics of Aging (MEA) at the Max Planck Institute for Social Law and Social Policy.
    12. Brownstone, David, 1997. "Multiple Imputation Methodology for Missing Data, Non-Random Response, and Panel Attrition," University of California Transportation Center, Working Papers qt2zd6w6hh, University of California Transportation Center.
    13. Zachary H. Seeskin, 2016. "Evaluating the Use of Commercial Data to Improve Survey Estimates of Property Taxes," CARRA Working Papers 2016-06, Center for Economic Studies, U.S. Census Bureau.
    14. F. Di Lascio & Simone Giannerini & Alessandra Reale, 2015. "Exploring copulas for the imputation of complex dependent data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(1), pages 159-175, March.
    15. Ankita Patnaik & Jeffrey Hemmeter & Arif Mamun, "undated". "Promoting Readiness of Minors with Autism Spectrum Disorder: Evidence from a Randomized Controlled Trial," Mathematica Policy Research Reports a74c93d9bdce40709ad81cdbc, Mathematica Policy Research.
    16. Aiai Yu & Yujie Zhong & Xingdong Feng & Ying Wei, 2023. "Quantile regression for nonignorable missing data with its application of analyzing electronic medical records," Biometrics, The International Biometric Society, vol. 79(3), pages 2036-2049, September.
    17. Westermeier, Christian & Grabka, Markus M., 2016. "Longitudinal Wealth Data and Multiple Imputation: An Evaluation Study," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 10(3), pages 237-252.
    18. Youngjoo Cho & Debashis Ghosh, 2021. "Quantile-Based Subgroup Identification for Randomized Clinical Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 13(1), pages 90-128, April.
    19. Jingxuan Guo & Fuguo Liu & Wolfgang Karl Härdle & Xueliang Zhang & Kai Wang & Ting Zeng & Liping Yang & Maozai Tian, 2023. "Sampling Importance Resampling Algorithm with Nonignorable Missing Response Variable Based on Smoothed Quantile Regression," Mathematics, MDPI, vol. 11(24), pages 1-30, December.
    20. Ahfock, Daniel & Pyne, Saumyadipta & McLachlan, Geoffrey J., 2022. "Statistical file-matching of non-Gaussian data: A game theoretic approach," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:63:y:2022:i:1:d:10.1007_s00362-021-01261-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.