IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/56733.html
   My bibliography  Save this paper

Weighted pairwise likelihood estimation for a general class of random effects models

Author

Listed:
  • Vasdekis, Vassilis G. S.
  • Rizopoulos, Dimitris
  • Moustaki, Irini

Abstract

Models with random effects/latent variables are widely used for capturing unobserved heterogeneity in multilevel/hierarchical data and account for associations in multivariate data. The estimation of those models becomes cumbersome as the number of latent variables increases due to high-dimensional integrations involved. Composite likelihood is a pseudo-likelihood that combines lower-order marginal or conditional densities such as univariate and/or bivariate; it has been proposed in the literature as an alternative to full maximum likelihood estimation. We propose a weighted pairwise likelihood estimator based on estimates obtained from separate maximizations of marginal pairwise likelihoods. The derived weights minimize the total variance of the estimated parameters. The proposed weighted estimator is found to be more efficient than the one that assumes all weights to be equal. The methodology is applied to a multivariate growth model for binary outcomes in the analysis of four indicators of schistosomiasis before and after drug administration.

Suggested Citation

  • Vasdekis, Vassilis G. S. & Rizopoulos, Dimitris & Moustaki, Irini, 2014. "Weighted pairwise likelihood estimation for a general class of random effects models," LSE Research Online Documents on Economics 56733, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:56733
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/56733/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marco Alfó & Francesco Bartolucci, 2015. "Latent variable models for the analysis of socio-economic data," METRON, Springer;Sapienza Università di Roma, vol. 73(2), pages 151-154, August.
    2. Hillary Koch & Cheryl A. Keller & Guanjue Xiang & Belinda Giardine & Feipeng Zhang & Yicheng Wang & Ross C. Hardison & Qunhua Li, 2022. "CLIMB: High-dimensional association detection in large scale genomic data," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Papageorgiou, Ioulia & Moustaki, Irini, 2019. "Sampling of pairs in pairwise likelihood estimation for latent variable models with categorical observed variables," LSE Research Online Documents on Economics 87592, London School of Economics and Political Science, LSE Library.
    4. K. Florios & I. Moustaki & D. Rizopoulos & V. Vasdekis, 2015. "A modified weighted pairwise likelihood estimator for a class of random effects models," METRON, Springer;Sapienza Università di Roma, vol. 73(2), pages 217-228, August.
    5. Zhan Liu & Chun Yip Yau, 2022. "A propensity score adjustment method for longitudinal time series models under nonignorable nonresponse," Statistical Papers, Springer, vol. 63(1), pages 317-342, February.

    More about this item

    Keywords

    categorical data; composite likelihood; generalized linear latent variable models; longitudinal data;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:56733. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.