IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i24p4906-d1296805.html
   My bibliography  Save this article

Sampling Importance Resampling Algorithm with Nonignorable Missing Response Variable Based on Smoothed Quantile Regression

Author

Listed:
  • Jingxuan Guo

    (School of Statistics and Data Science, Beijing Wuzi University, Beijing 101149, China
    The first two authors contributed equally to this work.)

  • Fuguo Liu

    (School of Statistics and Data Science, Xinjiang University of Finance and Economics, Urumqi 830012, China
    School of Mathematics and Data Science, Changji University, Changji 831100, China
    The first two authors contributed equally to this work.)

  • Wolfgang Karl Härdle

    (Department of Information Management and Finance, National Yang Ming Chiao Tung University, Taiwan 30010, China
    Institute Digital Assets, Academy Economic Sciences, 010374 Bucharest, Romania
    School of Business and Economics, Humboldt-Universität zu Berlin, 10117 Berlin, Germany)

  • Xueliang Zhang

    (Department of Medical Engineering and Technology, Xinjiang Medical University, Urumqi 830011, China)

  • Kai Wang

    (Department of Medical Engineering and Technology, Xinjiang Medical University, Urumqi 830011, China)

  • Ting Zeng

    (Department of Medical Engineering and Technology, Xinjiang Medical University, Urumqi 830011, China)

  • Liping Yang

    (Department of Medical Engineering and Technology, Xinjiang Medical University, Urumqi 830011, China)

  • Maozai Tian

    (Department of Medical Engineering and Technology, Xinjiang Medical University, Urumqi 830011, China)

Abstract

The presence of nonignorable missing response variables often leads to complex conditional distribution patterns that cannot be effectively captured through mean regression. In contrast, quantile regression offers valuable insights into the conditional distribution. Consequently, this article places emphasis on the quantile regression approach to address nonrandom missing data. Taking inspiration from fractional imputation, this paper proposes a novel smoothed quantile regression estimation equation based on a sampling importance resampling (SIR) algorithm instead of nonparametric kernel regression methods. Additionally, we present an augmented inverse probability weighting (AIPW) smoothed quantile regression estimation equation to reduce the influence of potential misspecification in a working model. The consistency and asymptotic normality of the empirical likelihood estimators corresponding to the above estimating equations are proven under the assumption of a correctly specified parameter working model. Furthermore, we demonstrate that the AIPW estimation equation converges to an IPW estimation equation when a parameter working model is misspecified, thus illustrating the robustness of the AIPW estimation approach. Through numerical simulations, we examine the finite sample properties of the proposed method when the working models are both correctly specified and misspecified. Furthermore, we apply the proposed method to analyze HIV—CD4 data, thereby exploring variations in treatment effects and the influence of other covariates across different quantiles.

Suggested Citation

  • Jingxuan Guo & Fuguo Liu & Wolfgang Karl Härdle & Xueliang Zhang & Kai Wang & Ting Zeng & Liping Yang & Maozai Tian, 2023. "Sampling Importance Resampling Algorithm with Nonignorable Missing Response Variable Based on Smoothed Quantile Regression," Mathematics, MDPI, vol. 11(24), pages 1-30, December.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:24:p:4906-:d:1296805
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/24/4906/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/24/4906/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Joel L. Horowitz, 1998. "Bootstrap Methods for Median Regression Models," Econometrica, Econometric Society, vol. 66(6), pages 1327-1352, November.
    2. Whitney K. Newey & Richard J. Smith, 2004. "Higher Order Properties of Gmm and Generalized Empirical Likelihood Estimators," Econometrica, Econometric Society, vol. 72(1), pages 219-255, January.
    3. Min Zhang & Anastasios A. Tsiatis & Marie Davidian, 2008. "Improving Efficiency of Inferences in Randomized Clinical Trials Using Auxiliary Covariates," Biometrics, The International Biometric Society, vol. 64(3), pages 707-715, September.
    4. Jae Kwang Kim, 2011. "Parametric fractional imputation for missing data analysis," Biometrika, Biometrika Trust, vol. 98(1), pages 119-132.
    5. repec:mpr:mprres:8160 is not listed on IDEAS
    6. Xuerong Chen & Alan T. K. Wan & Yong Zhou, 2015. "Efficient Quantile Regression Analysis With Missing Observations," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 723-741, June.
    7. Jun Shao & Lei Wang, 2016. "Semiparametric inverse propensity weighting for nonignorable missing data," Biometrika, Biometrika Trust, vol. 103(1), pages 175-187.
    8. Kim, Jae Kwang & Yu, Cindy Long, 2011. "A Semiparametric Estimation of Mean Functionals With Nonignorable Missing Data," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 157-165.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Ting & Wang, Lei, 2020. "Smoothed empirical likelihood inference and variable selection for quantile regression with nonignorable missing response," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    2. Aiai Yu & Yujie Zhong & Xingdong Feng & Ying Wei, 2023. "Quantile regression for nonignorable missing data with its application of analyzing electronic medical records," Biometrics, The International Biometric Society, vol. 79(3), pages 2036-2049, September.
    3. Parente, Paulo M.D.C. & Smith, Richard J., 2011. "Gel Methods For Nonsmooth Moment Indicators," Econometric Theory, Cambridge University Press, vol. 27(1), pages 74-113, February.
    4. Zhang, Jing & Wang, Qihua & Kang, Jian, 2020. "Feature screening under missing indicator imputation with non-ignorable missing response," Computational Statistics & Data Analysis, Elsevier, vol. 149(C).
    5. Firpo, Sergio & Galvao, Antonio F. & Pinto, Cristine & Poirier, Alexandre & Sanroman, Graciela, 2022. "GMM quantile regression," Journal of Econometrics, Elsevier, vol. 230(2), pages 432-452.
    6. Yujing Shao & Lei Wang, 2022. "Generalized partial linear models with nonignorable dropouts," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(2), pages 223-252, February.
    7. Zhan Liu & Chun Yip Yau, 2022. "A propensity score adjustment method for longitudinal time series models under nonignorable nonresponse," Statistical Papers, Springer, vol. 63(1), pages 317-342, February.
    8. Li, Mengyan & Ma, Yanyuan & Zhao, Jiwei, 2022. "Efficient estimation in a partially specified nonignorable propensity score model," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    9. Lei Wang & Wei Ma, 2021. "Improved empirical likelihood inference and variable selection for generalized linear models with longitudinal nonignorable dropouts," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(3), pages 623-647, June.
    10. Lei Wang, 2019. "Dimension reduction for kernel-assisted M-estimators with missing response at random," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(4), pages 889-910, August.
    11. Cui, Li-E & Zhao, Puying & Tang, Niansheng, 2022. "Generalized empirical likelihood for nonsmooth estimating equations with missing data," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    12. Guo, Xu & Song, Lianlian & Fang, Yun & Zhu, Lixing, 2019. "Model checking for general linear regression with nonignorable missing response," Computational Statistics & Data Analysis, Elsevier, vol. 138(C), pages 1-12.
    13. Peisong Han & Linglong Kong & Jiwei Zhao & Xingcai Zhou, 2019. "A general framework for quantile estimation with incomplete data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 305-333, April.
    14. Deng, Jianqiu & Yang, Xiaojie & Wang, Qihua, 2022. "Surrogate space based dimension reduction for nonignorable nonresponse," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    15. Wang, Lei & Zhao, Puying & Shao, Jun, 2021. "Dimension-reduced semiparametric estimation of distribution functions and quantiles with nonignorable nonresponse," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    16. Majid Mojirsheibani, 2022. "On the maximal deviation of kernel regression estimators with NMAR response variables," Statistical Papers, Springer, vol. 63(5), pages 1677-1705, October.
    17. Tang, Cheng Yong, 2024. "A model specification test for semiparametric nonignorable missing data modeling," Econometrics and Statistics, Elsevier, vol. 30(C), pages 124-132.
    18. Grigory Franguridi & Bulat Gafarov & Kaspar Wüthrich, 2021. "Conditional Quantile Estimators: A Small Sample Theory," CESifo Working Paper Series 9046, CESifo.
    19. Whang, Yoon-Jae, 2006. "Smoothed Empirical Likelihood Methods For Quantile Regression Models," Econometric Theory, Cambridge University Press, vol. 22(2), pages 173-205, April.
    20. Bindele, Huybrechts F. & Nguelifack, Brice M., 2019. "Generalized signed-rank estimation for regression models with non-ignorable missing responses," Computational Statistics & Data Analysis, Elsevier, vol. 139(C), pages 14-33.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:24:p:4906-:d:1296805. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.