IDEAS home Printed from https://ideas.repec.org/a/bla/istatr/v87y2019is1ps121-s138.html
   My bibliography  Save this article

Model‐Assisted Regression Estimators for Longitudinal Data with Nonignorable Dropout

Author

Listed:
  • Lei Wang
  • Cuicui Qi
  • Jun Shao

Abstract

Estimation with longitudinal Y having nonignorable dropout is considered when the joint distribution of Y and covariate X is nonparametric and the dropout propensity conditional on (Y,X) is parametric. We apply the generalised method of moments to estimate the parameters in the nonignorable dropout propensity based on estimating equations constructed using an instrument Z, which is part of X related to Y but unrelated to the dropout propensity conditioned on Y and other covariates. Population means and other parameters in the nonparametric distribution of Y can be estimated based on inverse propensity weighting with estimated propensity. To improve efficiency, we derive a model‐assisted regression estimator making use of information provided by the covariates and previously observed Y‐values in the longitudinal setting. The model‐assisted regression estimator is protected from model misspecification and is asymptotically normal and more efficient when the working models are correct and some other conditions are satisfied. The finite‐sample performance of the estimators is studied through simulation, and an application to the HIV‐CD4 data set is also presented as illustration.

Suggested Citation

  • Lei Wang & Cuicui Qi & Jun Shao, 2019. "Model‐Assisted Regression Estimators for Longitudinal Data with Nonignorable Dropout," International Statistical Review, International Statistical Institute, vol. 87(S1), pages 121-138, May.
  • Handle: RePEc:bla:istatr:v:87:y:2019:i:s1:p:s121-s138
    DOI: 10.1111/insr.12288
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/insr.12288
    Download Restriction: no

    File URL: https://libkey.io/10.1111/insr.12288?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhan Liu & Chun Yip Yau, 2022. "A propensity score adjustment method for longitudinal time series models under nonignorable nonresponse," Statistical Papers, Springer, vol. 63(1), pages 317-342, February.
    2. Lei Wang & Wei Ma, 2021. "Improved empirical likelihood inference and variable selection for generalized linear models with longitudinal nonignorable dropouts," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(3), pages 623-647, June.
    3. Yujing Shao & Lei Wang, 2022. "Generalized partial linear models with nonignorable dropouts," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(2), pages 223-252, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:istatr:v:87:y:2019:i:s1:p:s121-s138. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/isiiinl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.