IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v62y2021i4d10.1007_s00362-020-01173-5.html
   My bibliography  Save this article

On mean derivative estimation of longitudinal and functional data: from sparse to dense

Author

Listed:
  • Hassan Sharghi Ghale-Joogh

    (Shahid Beheshti University)

  • S. Mohammad E. Hosseini-Nasab

    (Shahid Beheshti University)

Abstract

Derivative estimation of the mean of longitudinal and functional data is useful, because it provides a quantitative measure of changes in the mean function that can be used for modeling of the data. We propose a general method for estimation of the derivative of the mean function that allows us to make inference about both longitudinal and functional data regardless of the sparsity of data. The $$L^2$$ L 2 and uniform convergence rates of the local linear estimator for the true derivative of the mean function are derived. Then the optimal weighting scheme under the $$L^2$$ L 2 rate of convergence is obtained. The performance of the proposed method is evaluated by a simulation study, and additionally compared with another existing method. The method is used to analyse a real data set involving children weight growth failure.

Suggested Citation

  • Hassan Sharghi Ghale-Joogh & S. Mohammad E. Hosseini-Nasab, 2021. "On mean derivative estimation of longitudinal and functional data: from sparse to dense," Statistical Papers, Springer, vol. 62(4), pages 2047-2066, August.
  • Handle: RePEc:spr:stpapr:v:62:y:2021:i:4:d:10.1007_s00362-020-01173-5
    DOI: 10.1007/s00362-020-01173-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-020-01173-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-020-01173-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yixin Chen & Weixin Yao, 2017. "Unified Inference for Sparse and Dense Longitudinal Data in Time-varying Coefficient Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(1), pages 268-284, March.
    2. Liu, Bitao & Müller, Hans-Georg, 2009. "Estimating Derivatives for Samples of Sparsely Observed Functions, With Application to Online Auction Dynamics," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 704-717.
    3. Zhang, Xiaoke & Wang, Jane-Ling, 2018. "Optimal weighting schemes for longitudinal and functional data," Statistics & Probability Letters, Elsevier, vol. 138(C), pages 165-170.
    4. Ling Zhou & Huazhen Lin & Hua Liang, 2018. "Efficient Estimation of the Nonparametric Mean and Covariance Functions for Longitudinal and Sparse Functional Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(524), pages 1550-1564, October.
    5. Jianqing Fan & Wenyang Zhang, 2000. "Simultaneous Confidence Bands and Hypothesis Testing in Varying‐coefficient Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 27(4), pages 715-731, December.
    6. Pini, Alessia & Spreafico, Lorenzo & Vantini, Simone & Vietti, Alessandro, 2019. "Multi-aspect local inference for functional data: Analysis of ultrasound tongue profiles," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 162-185.
    7. Juxia Xiao & Xu Li & Jianhong Shi, 2019. "Local linear smoothers using inverse Gaussian regression," Statistical Papers, Springer, vol. 60(4), pages 1225-1253, August.
    8. Kara, Lydia-Zaitri & Laksaci, Ali & Rachdi, Mustapha & Vieu, Philippe, 2017. "Data-driven kNN estimation in nonparametric functional data analysis," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 176-188.
    9. N. Hosseinioun & H. Doosti & H. Nirumand, 2012. "Nonparametric estimation of the derivatives of a density by the method of wavelet for mixing sequences," Statistical Papers, Springer, vol. 53(1), pages 195-203, February.
    10. Wanrong Liu & Xuewen Lu, 2011. "Empirical likelihood for density-weighted average derivatives," Statistical Papers, Springer, vol. 52(2), pages 391-412, May.
    11. Honglang Wang & Ping‐Shou Zhong & Yuehua Cui & Yehua Li, 2018. "Unified empirical likelihood ratio tests for functional concurrent linear models and the phase transition from sparse to dense functional data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(2), pages 343-364, March.
    12. Shuzhuan Zheng & Lijian Yang & Wolfgang K. Härdle, 2014. "A Smooth Simultaneous Confidence Corridor for the Mean of Sparse Functional Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 661-673, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li Cai & Lijie Gu & Qihua Wang & Suojin Wang, 2021. "Simultaneous confidence bands for nonparametric regression with missing covariate data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(6), pages 1249-1279, December.
    2. Aneiros, Germán & Cao, Ricardo & Fraiman, Ricardo & Genest, Christian & Vieu, Philippe, 2019. "Recent advances in functional data analysis and high-dimensional statistics," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 3-9.
    3. Yu-Ye Zou & Han-Ying Liang, 2020. "CLT for integrated square error of density estimators with censoring indicators missing at random," Statistical Papers, Springer, vol. 61(6), pages 2685-2714, December.
    4. Shuzhuan Zheng & Rong Liu & Lijian Yang & Wolfgang K. Härdle, 2016. "Statistical inference for generalized additive models: simultaneous confidence corridors and variable selection," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(4), pages 607-626, December.
    5. Han-Ying Liang & Jong-Il Baek, 2016. "Asymptotic normality of conditional density estimation with left-truncated and dependent data," Statistical Papers, Springer, vol. 57(1), pages 1-20, March.
    6. Yuliana Linke & Igor Borisov & Pavel Ruzankin & Vladimir Kutsenko & Elena Yarovaya & Svetlana Shalnova, 2022. "Universal Local Linear Kernel Estimators in Nonparametric Regression," Mathematics, MDPI, vol. 10(15), pages 1-28, July.
    7. Li Cai & Lisha Li & Simin Huang & Liang Ma & Lijian Yang, 2020. "Oracally efficient estimation for dense functional data with holiday effects," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 282-306, March.
    8. Yuliana Linke & Igor Borisov & Pavel Ruzankin & Vladimir Kutsenko & Elena Yarovaya & Svetlana Shalnova, 2024. "Multivariate Universal Local Linear Kernel Estimators in Nonparametric Regression: Uniform Consistency," Mathematics, MDPI, vol. 12(12), pages 1-23, June.
    9. Ghosal, Rahul & Maity, Arnab, 2022. "A Score Based Test for Functional Linear Concurrent Regression," Econometrics and Statistics, Elsevier, vol. 21(C), pages 114-130.
    10. Xiong Cai & Liugen Xue & Xiaolong Pu & Xingyu Yan, 2021. "Efficient Estimation for Varying-Coefficient Mixed Effects Models with Functional Response Data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(4), pages 467-495, May.
    11. Li, Yehua & Qiu, Yumou & Xu, Yuhang, 2022. "From multivariate to functional data analysis: Fundamentals, recent developments, and emerging areas," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    12. Koki Momoki & Takuma Yoshida, 2024. "Hypothesis testing for varying coefficient models in tail index regression," Statistical Papers, Springer, vol. 65(6), pages 3821-3852, August.
    13. Wongsa-art, Pipat & Kim, Namhyun & Xia, Yingcun & Moscone, Francesco, 2024. "Varying coefficient panel data models and methods under correlated error components: Application to disparities in mental health services in England," Regional Science and Urban Economics, Elsevier, vol. 106(C).
    14. Litimein, Ouahiba & Laksaci, Ali & Mechab, Boubaker & Bouzebda, Salim, 2023. "Local linear estimate of the functional expectile regression," Statistics & Probability Letters, Elsevier, vol. 192(C).
    15. Kim, Kun Ho & Chao, Shih-Kang & Härdle, Wolfgang Karl, 2020. "Simultaneous Inference of the Partially Linear Model with a Multivariate Unknown Function," IRTG 1792 Discussion Papers 2020-008, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    16. Xiongtao Dai & Zhenhua Lin & Hans‐Georg Müller, 2021. "Modeling sparse longitudinal data on Riemannian manifolds," Biometrics, The International Biometric Society, vol. 77(4), pages 1328-1341, December.
    17. Qinchi Zhang & Wenzhi Yang & Shuhe Hu, 2014. "On Bahadur representation for sample quantiles under α-mixing sequence," Statistical Papers, Springer, vol. 55(2), pages 285-299, May.
    18. Donald, Stephen G. & Fortuna, Natércia & Pipiras, Vladas, 2011. "Local and Global Rank Tests for Multivariate Varying-Coefficient Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(2), pages 295-306.
    19. Cui, Xia & Lu, Ying & Peng, Heng, 2017. "Estimation of partially linear regression models under the partial consistency property," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 103-121.
    20. Andros Kourtellos, 2002. "Modeling Parameter Heterogeneity in Cross Country Growth Regression Models," University of Cyprus Working Papers in Economics 0212, University of Cyprus Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:62:y:2021:i:4:d:10.1007_s00362-020-01173-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.