IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v65y2024i6d10.1007_s00362-024-01538-0.html
   My bibliography  Save this article

Hypothesis testing for varying coefficient models in tail index regression

Author

Listed:
  • Koki Momoki

    (Kagoshima University)

  • Takuma Yoshida

    (Kagoshima University)

Abstract

This study examines the varying coefficient model in tail index regression. The varying coefficient model is an efficient semiparametric model that avoids the curse of dimensionality when including large covariates in the model. In fact, the varying coefficient model is useful in mean, quantile, and other regressions. The tail index regression is not an exception. However, the varying coefficient model is flexible, but leaner and simpler models are preferred for applications. Therefore, it is important to evaluate whether the estimated coefficient function varies significantly with covariates. If the effect of the non-linearity of the model is weak, the varying coefficient structure is reduced to a simpler model, such as a constant or zero. Accordingly, the hypothesis test for model assessment in the varying coefficient model has been discussed in mean and quantile regression. However, there are no results in tail index regression. In this study, we investigate the asymptotic properties of an estimator and provide a hypothesis testing method for varying coefficient models for tail index regression.

Suggested Citation

  • Koki Momoki & Takuma Yoshida, 2024. "Hypothesis testing for varying coefficient models in tail index regression," Statistical Papers, Springer, vol. 65(6), pages 3821-3852, August.
  • Handle: RePEc:spr:stpapr:v:65:y:2024:i:6:d:10.1007_s00362-024-01538-0
    DOI: 10.1007/s00362-024-01538-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-024-01538-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-024-01538-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Benjamin D. Youngman, 2019. "Generalized Additive Models for Exceedances of High Thresholds With an Application to Return Level Estimation for U.S. Wind Gusts," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(528), pages 1865-1879, October.
    2. Jianqing Fan & Wenyang Zhang, 2000. "Simultaneous Confidence Bands and Hypothesis Testing in Varying‐coefficient Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 27(4), pages 715-731, December.
    3. Daouia, Abdelaati & Gardes, Laurent & Girard, Stephane, 2011. "On kernel smoothing for extremal quantile regression," LIDAM Discussion Papers ISBA 2011031, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    4. Yaolan Ma & Bo Wei & Wei Huang, 2020. "A nonparametric estimator for the conditional tail index of Pareto-type distributions," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(1), pages 17-44, January.
    5. Yaolan Ma & Yuexiang Jiang & Wei Huang, 2019. "Tail index varying coefficient model," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 48(2), pages 235-256, January.
    6. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    7. Cai, Zongwu & Xu, Xiaoping, 2009. "Nonparametric Quantile Estimations for Dynamic Smooth Coefficient Models," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 371-383.
    8. Rui Li & Chenlei Leng & Jinhong You, 2022. "Semiparametric Tail Index Regression," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 82-95, January.
    9. Jianhua Z. Huang, 2002. "Varying-coefficient models and basis function approximations for the analysis of repeated measurements," Biometrika, Biometrika Trust, vol. 89(1), pages 111-128, March.
    10. Wang, Hansheng & Tsai, Chih-Ling, 2009. "Tail Index Regression," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1233-1240.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weihua Zhao & Weiping Zhang & Heng Lian, 2020. "Marginal quantile regression for varying coefficient models with longitudinal data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(1), pages 213-234, February.
    2. Ngai Hang Chan & Linhao Gao & Wilfredo Palma, 2022. "Simultaneous variable selection and structural identification for time‐varying coefficient models," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(4), pages 511-531, July.
    3. Hongyu An & Boping Tian, 2024. "Varying Index Coefficient Model for Tail Index Regression," Mathematics, MDPI, vol. 12(13), pages 1-35, June.
    4. Zhao, Weihua & Zhang, Riquan & Liu, Jicai & Hu, Hongchang, 2015. "Robust adaptive estimation for semivarying coefficient models," Statistics & Probability Letters, Elsevier, vol. 97(C), pages 132-141.
    5. Feng, Sanying & He, Wenqi & Li, Feng, 2020. "Model detection and estimation for varying coefficient panel data models with fixed effects," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    6. Weihua Zhao & Riquan Zhang & Jicai Liu, 2013. "Robust variable selection for the varying coefficient model based on composite L 1 -- L 2 regression," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(9), pages 2024-2040, September.
    7. Jo~ao Nicolau & Paulo M. M. Rodrigues, 2024. "A simple but powerful tail index regression," Papers 2409.13531, arXiv.org.
    8. Zhang, Ting, 2015. "Semiparametric model building for regression models with time-varying parameters," Journal of Econometrics, Elsevier, vol. 187(1), pages 189-200.
    9. Jun Jin & Tiefeng Ma & Jiajia Dai, 2021. "New efficient spline estimation for varying-coefficient models with two-step knot number selection," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(5), pages 693-712, July.
    10. Weihua Zhao & Riquan Zhang & Jicai Liu & Yazhao Lv, 2014. "Robust and efficient variable selection for semiparametric partially linear varying coefficient model based on modal regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(1), pages 165-191, February.
    11. Zhao, Weihua & Jiang, Xuejun & Lian, Heng, 2018. "A principal varying-coefficient model for quantile regression: Joint variable selection and dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 269-280.
    12. Lian, Heng, 2015. "Quantile regression for dynamic partially linear varying coefficient time series models," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 49-66.
    13. Byeong U. Park & Enno Mammen & Young K. Lee & Eun Ryung Lee, 2015. "Varying Coefficient Regression Models: A Review and New Developments," International Statistical Review, International Statistical Institute, vol. 83(1), pages 36-64, April.
    14. Zhao, Weihua & Lian, Heng, 2017. "Quantile index coefficient model with variable selection," Journal of Multivariate Analysis, Elsevier, vol. 154(C), pages 40-58.
    15. Abduraimova, Kumushoy, 2022. "Contagion and tail risk in complex financial networks," Journal of Banking & Finance, Elsevier, vol. 143(C).
    16. Ye, Mao & Lu, Zhao-Hua & Li, Yimei & Song, Xinyuan, 2019. "Finite mixture of varying coefficient model: Estimation and component selection," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 452-474.
    17. Tizheng Li & Xiaojuan Kang, 2022. "Variable selection of higher-order partially linear spatial autoregressive model with a diverging number of parameters," Statistical Papers, Springer, vol. 63(1), pages 243-285, February.
    18. Goedele Dierckx & Yuri Goegebeur & Armelle Guillou, 2014. "Local robust and asymptotically unbiased estimation of conditional Pareto-type tails," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 330-355, June.
    19. Qiu, Jia & Li, Degao & You, Jinhong, 2015. "SCAD-penalized regression for varying-coefficient models with autoregressive errors," Journal of Multivariate Analysis, Elsevier, vol. 137(C), pages 100-118.
    20. Xiaochao Xia & Hao Ming, 2022. "A Flexibly Conditional Screening Approach via a Nonparametric Quantile Partial Correlation," Mathematics, MDPI, vol. 10(24), pages 1-32, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:65:y:2024:i:6:d:10.1007_s00362-024-01538-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.