IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i12p1890-d1417300.html
   My bibliography  Save this article

Multivariate Universal Local Linear Kernel Estimators in Nonparametric Regression: Uniform Consistency

Author

Listed:
  • Yuliana Linke

    (Sobolev Institute of Mathematics, 630090 Novosibirsk, Russia
    Department of Probability and Mathematical Statistics, Novosibirsk State University, 630090 Novosibirsk, Russia)

  • Igor Borisov

    (Sobolev Institute of Mathematics, 630090 Novosibirsk, Russia
    Department of Probability and Mathematical Statistics, Novosibirsk State University, 630090 Novosibirsk, Russia)

  • Pavel Ruzankin

    (Sobolev Institute of Mathematics, 630090 Novosibirsk, Russia
    Department of Probability and Mathematical Statistics, Novosibirsk State University, 630090 Novosibirsk, Russia)

  • Vladimir Kutsenko

    (Department of Probability Theory, Lomonosov Moscow State University, 119234 Moscow, Russia
    Department of Epidemiology of Noncommunicable Diseases, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia)

  • Elena Yarovaya

    (Department of Probability Theory, Lomonosov Moscow State University, 119234 Moscow, Russia
    Department of Epidemiology of Noncommunicable Diseases, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia)

  • Svetlana Shalnova

    (Department of Epidemiology of Noncommunicable Diseases, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia)

Abstract

In this paper, for a wide class of nonparametric regression models, new local linear kernel estimators are proposed that are uniformly consistent under close-to-minimal and visual conditions on design points. These estimators are universal in the sense that their designs can be either fixed and not necessarily satisfying the traditional regularity conditions, or random, while not necessarily consisting of independent or weakly dependent random variables. With regard to the design elements, only dense filling of the regression function domain with the design points without any specification of their correlation is assumed. This study extends the dense data methodology and main results of the authors’ previous work for the case of regression functions of several variables.

Suggested Citation

  • Yuliana Linke & Igor Borisov & Pavel Ruzankin & Vladimir Kutsenko & Elena Yarovaya & Svetlana Shalnova, 2024. "Multivariate Universal Local Linear Kernel Estimators in Nonparametric Regression: Uniform Consistency," Mathematics, MDPI, vol. 12(12), pages 1-23, June.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:12:p:1890-:d:1417300
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/12/1890/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/12/1890/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Linke, Yu.Yu. & Borisov, I.S., 2017. "Constructing initial estimators in one-step estimation procedures of nonlinear regression," Statistics & Probability Letters, Elsevier, vol. 120(C), pages 87-94.
    2. Shen, Jia & Xie, Yuan, 2013. "Strong consistency of the internal estimator of nonparametric regression with dependent data," Statistics & Probability Letters, Elsevier, vol. 83(8), pages 1915-1925.
    3. Yuliana Linke & Igor Borisov, 2022. "Insensitivity of Nadaraya–Watson estimators to design correlation," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 51(19), pages 6909-6918, October.
    4. Oliver Linton & David Jacho-Chávez, 2010. "On internally corrected and symmetrized kernel estimators for nonparametric regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(1), pages 166-186, May.
    5. Ling Zhou & Huazhen Lin & Hua Liang, 2018. "Efficient Estimation of the Nonparametric Mean and Covariance Functions for Longitudinal and Sparse Functional Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(524), pages 1550-1564, October.
    6. Yuliana Linke, 2019. "Asymptotic properties of one-step M-estimators," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 48(16), pages 4096-4118, August.
    7. Gao, Jiti & Kanaya, Shin & Li, Degui & Tjøstheim, Dag, 2015. "Uniform Consistency For Nonparametric Estimators In Null Recurrent Time Series," Econometric Theory, Cambridge University Press, vol. 31(5), pages 911-952, October.
    8. Yao, Fang & Muller, Hans-Georg & Wang, Jane-Ling, 2005. "Functional Data Analysis for Sparse Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 577-590, June.
    9. Wang, Qiying & Phillips, Peter C.B., 2009. "Asymptotic Theory For Local Time Density Estimation And Nonparametric Cointegrating Regression," Econometric Theory, Cambridge University Press, vol. 25(3), pages 710-738, June.
    10. Igor S. Borisov & Yuliana Yu. Linke & Pavel S. Ruzankin, 2021. "Universal weighted kernel-type estimators for some class of regression models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(2), pages 141-166, February.
    11. Tang, Xufei & Xi, Mengmei & Wu, Yi & Wang, Xuejun, 2018. "Asymptotic normality of a wavelet estimator for asymptotically negatively associated errors," Statistics & Probability Letters, Elsevier, vol. 140(C), pages 191-201.
    12. Linton, Oliver & Wang, Qiying, 2016. "Nonparametric Transformation Regression With Nonstationary Data," Econometric Theory, Cambridge University Press, vol. 32(1), pages 1-29, February.
    13. Emmanuel Rio, 2009. "Moment Inequalities for Sums of Dependent Random Variables under Projective Conditions," Journal of Theoretical Probability, Springer, vol. 22(1), pages 146-163, March.
    14. Hansen, Bruce E., 2008. "Uniform Convergence Rates For Kernel Estimation With Dependent Data," Econometric Theory, Cambridge University Press, vol. 24(3), pages 726-748, June.
    15. Roussas, George G., 1990. "Nonparametric regression estimation under mixing conditions," Stochastic Processes and their Applications, Elsevier, vol. 36(1), pages 107-116, October.
    16. Qiying Wang & Peter C. B. Phillips, 2009. "Structural Nonparametric Cointegrating Regression," Econometrica, Econometric Society, vol. 77(6), pages 1901-1948, November.
    17. Georgiev, Alexander A., 1990. "Nonparametric multiple function fitting," Statistics & Probability Letters, Elsevier, vol. 10(3), pages 203-211, August.
    18. Gu, Wentao & Roussas, George G. & Tran, Lanh T., 2007. "On the convergence rate of fixed design regression estimators for negatively associated random variables," Statistics & Probability Letters, Elsevier, vol. 77(12), pages 1214-1224, July.
    19. Yao, Fang, 2007. "Asymptotic distributions of nonparametric regression estimators for longitudinal or functional data," Journal of Multivariate Analysis, Elsevier, vol. 98(1), pages 40-56, January.
    20. Liang, Han-Ying & Jing, Bing-Yi, 2005. "Asymptotic properties for estimates of nonparametric regression models based on negatively associated sequences," Journal of Multivariate Analysis, Elsevier, vol. 95(2), pages 227-245, August.
    21. Elias Masry, 1996. "Multivariate Local Polynomial Regression For Time Series:Uniform Strong Consistency And Rates," Journal of Time Series Analysis, Wiley Blackwell, vol. 17(6), pages 571-599, November.
    22. Shuzhuan Zheng & Lijian Yang & Wolfgang K. Härdle, 2014. "A Smooth Simultaneous Confidence Corridor for the Mean of Sparse Functional Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 661-673, June.
    23. Jingping Gu & Qi Li & Jui-Chung Yang, 2015. "Multivariate Local Polynomial Kernel Estimators: Leading Bias and Asymptotic Distribution," Econometric Reviews, Taylor & Francis Journals, vol. 34(6-10), pages 979-1010, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuliana Linke & Igor Borisov & Pavel Ruzankin & Vladimir Kutsenko & Elena Yarovaya & Svetlana Shalnova, 2022. "Universal Local Linear Kernel Estimators in Nonparametric Regression," Mathematics, MDPI, vol. 10(15), pages 1-28, July.
    2. Li, Degui & Phillips, Peter C. B. & Gao, Jiti, 2016. "Uniform Consistency Of Nonstationary Kernel-Weighted Sample Covariances For Nonparametric Regression," Econometric Theory, Cambridge University Press, vol. 32(3), pages 655-685, June.
    3. Gao, Jiti & Kanaya, Shin & Li, Degui & Tjøstheim, Dag, 2015. "Uniform Consistency For Nonparametric Estimators In Null Recurrent Time Series," Econometric Theory, Cambridge University Press, vol. 31(5), pages 911-952, October.
    4. Gu, Jingping & Liang, Zhongwen, 2014. "Testing cointegration relationship in a semiparametric varying coefficient model," Journal of Econometrics, Elsevier, vol. 178(P1), pages 57-70.
    5. Luya Wang & Zhongwen Liang & Juan Lin & Qi Li, 2015. "Local Constant Kernel Estimation of a Partially Linear Varying Coefficient Cointegration Model," Annals of Economics and Finance, Society for AEF, vol. 16(2), pages 353-369, November.
    6. Zhong, Rou & Liu, Shishi & Li, Haocheng & Zhang, Jingxiao, 2022. "Robust functional principal component analysis for non-Gaussian longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    7. Patrick Saart & Jiti Gao & Nam Hyun Kim, 2014. "Semiparametric methods in nonlinear time series analysis: a selective review," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(1), pages 141-169, March.
    8. Wang, Qiying & Wu, Dongsheng & Zhu, Ke, 2018. "Model checks for nonlinear cointegrating regression," Journal of Econometrics, Elsevier, vol. 207(2), pages 261-284.
    9. Li, Degui & Lu, Zudi & Linton, Oliver, 2012. "Local Linear Fitting Under Near Epoch Dependence: Uniform Consistency With Convergence Rates," Econometric Theory, Cambridge University Press, vol. 28(5), pages 935-958, October.
    10. Juan Carlos Escanciano, 2020. "Uniform Rates for Kernel Estimators of Weakly Dependent Data," Papers 2005.09951, arXiv.org.
    11. Bu, Ruijun & Kim, Jihyun & Wang, Bin, 2023. "Uniform and Lp convergences for nonparametric continuous time regressions with semiparametric applications," Journal of Econometrics, Elsevier, vol. 235(2), pages 1934-1954.
    12. Jiti Gao & Peter C.B. Phillips, 2011. "Semiparametric Estimation in Multivariate Nonstationary Time Series Models," Monash Econometrics and Business Statistics Working Papers 17/11, Monash University, Department of Econometrics and Business Statistics.
    13. Qian Huang & Jinhong You & Liwen Zhang, 2022. "Efficient inference of longitudinal/functional data models with time‐varying additive structure," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(2), pages 744-771, June.
    14. repec:wyi:journl:002096 is not listed on IDEAS
    15. Phillips, Peter C.B. & Wang, Ying, 2022. "Functional coefficient panel modeling with communal smoothing covariates," Journal of Econometrics, Elsevier, vol. 227(2), pages 371-407.
    16. Li, Degui & Li, Runze, 2016. "Local composite quantile regression smoothing for Harris recurrent Markov processes," Journal of Econometrics, Elsevier, vol. 194(1), pages 44-56.
    17. Kanaya, Shin, 2017. "Uniform Convergence Rates Of Kernel-Based Nonparametric Estimators For Continuous Time Diffusion Processes: A Damping Function Approach," Econometric Theory, Cambridge University Press, vol. 33(4), pages 874-914, August.
    18. Shen, Jia & Xie, Yuan, 2013. "Strong consistency of the internal estimator of nonparametric regression with dependent data," Statistics & Probability Letters, Elsevier, vol. 83(8), pages 1915-1925.
    19. Biqing Cai & Chaohua Dong & Jiti Gao, 2015. "Orthogonal Series Estimation in Nonlinear Cointegrating Models with Endogeneity," Monash Econometrics and Business Statistics Working Papers 18/15, Monash University, Department of Econometrics and Business Statistics.
    20. Igor S. Borisov & Yuliana Yu. Linke & Pavel S. Ruzankin, 2021. "Universal weighted kernel-type estimators for some class of regression models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(2), pages 141-166, February.
    21. Lin, Yingqian & Tu, Yundong & Yao, Qiwei, 2020. "Estimation for double-nonlinear cointegration," Journal of Econometrics, Elsevier, vol. 216(1), pages 175-191.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:12:p:1890-:d:1417300. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.