IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v51y2024i3p1357-1387.html
   My bibliography  Save this article

Empirical likelihood M‐estimation for the varying‐coefficient model with functional response

Author

Listed:
  • Xingcai Zhou
  • Dehan Kong
  • Matthew Stephen Pietrosanu
  • Linglong Kong
  • Rohana J. Karunamuni

Abstract

This work is motivated by a gap in the functional data analysis literature, particularly in the context of neuroimaging, regarding the ability of functional models to robustly accommodate intra‐observation dependence. In response, we propose an M‐estimator based on generalized empirical likelihood for the varying‐coefficient model with a functional response. We develop statistical inference procedures, simultaneous confidence regions, and a global general linear hypothesis test for the model's functional coefficient. Our theoretical results establish the weak convergence of the log‐likelihood ratio process, a nonparametric version of Wilks' theorem for the log‐likelihood ratio, and asymptotic properties of the proposed estimator. Through a simulation study, we show that the proposed confidence sets have close‐to‐nominal coverage probabilities. In a real‐world application to a neuroimaging dataset, we show that mini‐mental state examination score and apolipoprotein E genotype have significant associations with fractional anisotropy, while associations with gender and age are only present at high quantile levels.

Suggested Citation

  • Xingcai Zhou & Dehan Kong & Matthew Stephen Pietrosanu & Linglong Kong & Rohana J. Karunamuni, 2024. "Empirical likelihood M‐estimation for the varying‐coefficient model with functional response," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 51(3), pages 1357-1387, September.
  • Handle: RePEc:bla:scjsta:v:51:y:2024:i:3:p:1357-1387
    DOI: 10.1111/sjos.12717
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/sjos.12717
    Download Restriction: no

    File URL: https://libkey.io/10.1111/sjos.12717?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Suojin Wang & Lianfen Qian & Raymond J. Carroll, 2010. "Generalized empirical likelihood methods for analyzing longitudinal data," Biometrika, Biometrika Trust, vol. 97(1), pages 79-93.
    2. Kosorok, Michael R., 2003. "Bootstraps of sums of independent but not identically distributed stochastic processes," Journal of Multivariate Analysis, Elsevier, vol. 84(2), pages 299-318, February.
    3. Wang, Lifeng & Li, Hongzhe & Huang, Jianhua Z., 2008. "Variable Selection in Nonparametric Varying-Coefficient Models for Analysis of Repeated Measurements," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1556-1569.
    4. Yao, Fang, 2007. "Asymptotic distributions of nonparametric regression estimators for longitudinal or functional data," Journal of Multivariate Analysis, Elsevier, vol. 98(1), pages 40-56, January.
    5. Honglang Wang & Ping‐Shou Zhong & Yuehua Cui & Yehua Li, 2018. "Unified empirical likelihood ratio tests for functional concurrent linear models and the phase transition from sparse to dense functional data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(2), pages 343-364, March.
    6. Fan, Jianqing & Yao, Qiwei, 1998. "Efficient estimation of conditional variance functions in stochastic regression," LSE Research Online Documents on Economics 6635, London School of Economics and Political Science, LSE Library.
    7. Liugen Xue & Lixing Zhu, 2007. "Empirical Likelihood Semiparametric Regression Analysis for Longitudinal Data," Biometrika, Biometrika Trust, vol. 94(4), pages 921-937.
    8. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    9. Xinchao Luo & Lixing Zhu & Hongtu Zhu, 2016. "Single‐index varying coefficient model for functional responses," Biometrics, The International Biometric Society, vol. 72(4), pages 1275-1284, December.
    10. Cheng Yong Tang & Chenlei Leng, 2011. "Empirical likelihood and quantile regression in longitudinal data analysis," Biometrika, Biometrika Trust, vol. 98(4), pages 1001-1006.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Kangning & Li, Shaomin & Sun, Xiaofei & Lin, Lu, 2019. "Modal regression statistical inference for longitudinal data semivarying coefficient models: Generalized estimating equations, empirical likelihood and variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 133(C), pages 257-276.
    2. Jing Lv & Chaohui Guo & Jibo Wu, 2019. "Smoothed empirical likelihood inference via the modified Cholesky decomposition for quantile varying coefficient models with longitudinal data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 999-1032, September.
    3. Chernozhukov, Victor & Fernández-Val, Iván & Hoderlein, Stefan & Holzmann, Hajo & Newey, Whitney, 2015. "Nonparametric identification in panels using quantiles," Journal of Econometrics, Elsevier, vol. 188(2), pages 378-392.
    4. Jing Lv & Chaohui Guo, 2017. "Efficient parameter estimation via modified Cholesky decomposition for quantile regression with longitudinal data," Computational Statistics, Springer, vol. 32(3), pages 947-975, September.
    5. Dingshi Tian & Zongwu Cai & Ying Fang, 2018. "Econometric Modeling of Risk Measures: A Selective Review of the Recent Literature," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201807, University of Kansas, Department of Economics, revised Oct 2018.
    6. Tang, Yanlin & Song, Xinyuan & Wang, Huixia Judy & Zhu, Zhongyi, 2013. "Variable selection in high-dimensional quantile varying coefficient models," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 115-132.
    7. Yang, Yiping & Li, Gaorong & Peng, Heng, 2014. "Empirical likelihood of varying coefficient errors-in-variables models with longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 127(C), pages 1-18.
    8. Cai, Zongwu & Xu, Xiaoping, 2009. "Nonparametric Quantile Estimations for Dynamic Smooth Coefficient Models," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 371-383.
    9. Maria Marino & Alessio Farcomeni, 2015. "Linear quantile regression models for longitudinal experiments: an overview," METRON, Springer;Sapienza Università di Roma, vol. 73(2), pages 229-247, August.
    10. Racine, Jeffrey S. & Li, Kevin, 2017. "Nonparametric conditional quantile estimation: A locally weighted quantile kernel approach," Journal of Econometrics, Elsevier, vol. 201(1), pages 72-94.
    11. Peixin Zhao & Liugen Xue, 2012. "Variable selection in semiparametric regression analysis for longitudinal data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(1), pages 213-231, February.
    12. Fu, Liya & Wang, You-Gan, 2016. "Efficient parameter estimation via Gaussian copulas for quantile regression with longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 492-502.
    13. Qian, Lianfen & Wang, Suojin, 2017. "Subject-wise empirical likelihood inference in partial linear models for longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 111(C), pages 77-87.
    14. Xiaoming Lu & Zhaozhi Fan, 2015. "Weighted quantile regression for longitudinal data," Computational Statistics, Springer, vol. 30(2), pages 569-592, June.
    15. Lin, Fangzheng & Tang, Yanlin & Zhu, Zhongyi, 2020. "Weighted quantile regression in varying-coefficient model with longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 145(C).
    16. Jia Chen & Degui Li & Hua Liang & Suojin Wang, 2014. "Semiparametric GEE Analysis in Partially Linear Single-Index Models for Longitudinal Data," Discussion Papers 14/26, Department of Economics, University of York.
    17. Li, Degui & Li, Runze, 2016. "Local composite quantile regression smoothing for Harris recurrent Markov processes," Journal of Econometrics, Elsevier, vol. 194(1), pages 44-56.
    18. Gloria González-Rivera & Tae-Hwy Lee, 2007. "Nonlinear Time Series in Financial Forecasting," Working Papers 200803, University of California at Riverside, Department of Economics, revised Feb 2008.
    19. Zhao, Peixin & Xue, Liugen, 2010. "Variable selection for semiparametric varying coefficient partially linear errors-in-variables models," Journal of Multivariate Analysis, Elsevier, vol. 101(8), pages 1872-1883, September.
    20. Hyunkeun Ryan Cho, 2018. "Statistical inference in a growth curve quantile regression model for longitudinal data," Biometrics, The International Biometric Society, vol. 74(3), pages 855-862, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:51:y:2024:i:3:p:1357-1387. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.