IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v115y2017icp103-121.html
   My bibliography  Save this article

Estimation of partially linear regression models under the partial consistency property

Author

Listed:
  • Cui, Xia
  • Lu, Ying
  • Peng, Heng

Abstract

Utilizing recent theoretical results in high dimensional statistical modeling, a flexible yet computationally simple approach is proposed to estimate the partially linear models. Motivated by the partial consistency phenomena, the nonparametric component in the partially linear model is modeled via incidental parameters and estimated by a simple local average over small partitions of the support of the nonparametric variables. The proposed least-squares based method seeks to strike a balance between computation burden and efficiency of the estimators while minimizing model bias. It is shown that given inconsistent estimators of the nonparametric component, square root-n consistent estimators of the parameters of the parametric component can be obtained with little loss in efficiency. Moreover, conditional on the parametric estimates, an optimal estimator of the nonparametric component can be obtained using classic nonparametric methods. The statistical inference problems regarding the parametric parameters and a two-population nonparametric testing problem regarding the nonparametric component are considered. The results show that the behavior of the test statistics is satisfactory. To assess the performance of the new method in comparison with other methods, three simulation studies are conducted and a real data set about risk factors of birth weights is analyzed.

Suggested Citation

  • Cui, Xia & Lu, Ying & Peng, Heng, 2017. "Estimation of partially linear regression models under the partial consistency property," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 103-121.
  • Handle: RePEc:eee:csdana:v:115:y:2017:i:c:p:103-121
    DOI: 10.1016/j.csda.2017.05.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947317300993
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2017.05.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hardle, Wolfgang & LIang, Hua & Gao, Jiti, 2000. "Partially linear models," MPRA Paper 39562, University Library of Munich, Germany, revised 01 Sep 2000.
    2. Andrews, Donald W K, 1994. "Asymptotics for Semiparametric Econometric Models via Stochastic Equicontinuity," Econometrica, Econometric Society, vol. 62(1), pages 43-72, January.
    3. Robinson, Peter M, 1988. "Root- N-Consistent Semiparametric Regression," Econometrica, Econometric Society, vol. 56(4), pages 931-954, July.
    4. Li, Qi, 1996. "On the root-N-consistent semiparametric estimation of partially linear models," Economics Letters, Elsevier, vol. 51(3), pages 277-285, June.
    5. Fan J. & Huang L-S., 2001. "Goodness-of-Fit Tests for Parametric Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 640-652, June.
    6. Ming-yen Cheng & Hau-tieng Wu, 2013. "Local Linear Regression on Manifolds and Its Geometric Interpretation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(504), pages 1421-1434, December.
    7. Schick, Anton, 1996. "Root-n consistent estimation in partly linear regression models," Statistics & Probability Letters, Elsevier, vol. 28(4), pages 353-358, August.
    8. Jianqing Fan & Wenyang Zhang, 2000. "Simultaneous Confidence Bands and Hypothesis Testing in Varying‐coefficient Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 27(4), pages 715-731, December.
    9. Li, Qi, 2000. "Efficient Estimation of Additive Partially Linear Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 41(4), pages 1073-1092, November.
    10. Jeffery Racine & Jeffrey Hart & Qi Li, 2006. "Testing the Significance of Categorical Predictor Variables in Nonparametric Regression Models," Econometric Reviews, Taylor & Francis Journals, vol. 25(4), pages 523-544.
    11. Fan, Jianqing & Peng, Heng & Huang, Tao, 2005. "Semilinear High-Dimensional Model for Normalization of Microarray Data: A Theoretical Analysis and Partial Consistency," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 781-796, September.
    12. Lancaster, Tony, 2000. "The incidental parameter problem since 1948," Journal of Econometrics, Elsevier, vol. 95(2), pages 391-413, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peng, Heng & Xie, Chuanlong & Zhao, Jingxin, 2021. "Fast inference for semi-varying coefficient models via local averaging," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    2. Amelia Simó & M. Victoria Ibáñez & Irene Epifanio & Vicent Gimeno, 2020. "Generalized partially linear models on Riemannian manifolds," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(3), pages 641-661, June.
    3. Liang, Weijuan & Zhang, Qingzhao & Ma, Shuangge, 2023. "Locally sparse quantile estimation for a partially functional interaction model," Computational Statistics & Data Analysis, Elsevier, vol. 186(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    2. Kim, Kun Ho & Chao, Shih-Kang & Härdle, Wolfgang Karl, 2020. "Simultaneous Inference of the Partially Linear Model with a Multivariate Unknown Function," IRTG 1792 Discussion Papers 2020-008, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    3. Daniel Becker & Alois Kneip & Valentin Patilea, 2021. "Semiparametric inference for partially linear regressions with Box-Cox transformation," Papers 2106.10723, arXiv.org.
    4. Dong, Chaohua & Gao, Jiti & Linton, Oliver, 2023. "High dimensional semiparametric moment restriction models," Journal of Econometrics, Elsevier, vol. 232(2), pages 320-345.
    5. Feng Yao & Junsen Zhang, 2015. "Efficient kernel-based semiparametric IV estimation with an application to resolving a puzzle on the estimates of the return to schooling," Empirical Economics, Springer, vol. 48(1), pages 253-281, February.
    6. Bertille Antoine & Xiaolin Sun, 2022. "Partially linear models with endogeneity: a conditional moment-based approach [Efficient estimation of models with conditional moment restrictions containing unknown functions]," The Econometrics Journal, Royal Economic Society, vol. 25(1), pages 256-275.
    7. Dette, Holger & Marchlewski, Mareen, 2007. "A test for the parametric form of the variance function in apartial linear regression model," Technical Reports 2007,26, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    8. Akdeniz Duran, Esra & Härdle, Wolfgang Karl & Osipenko, Maria, 2012. "Difference based ridge and Liu type estimators in semiparametric regression models," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 164-175.
    9. Kim, Namhyun & W. Saart, Patrick, 2021. "Estimation in partially linear semiparametric models with parametric and/or nonparametric endogeneity," Cardiff Economics Working Papers E2021/9, Cardiff University, Cardiff Business School, Economics Section.
    10. Hu Yang & Ning Li & Jing Yang, 2020. "A robust and efficient estimation and variable selection method for partially linear models with large-dimensional covariates," Statistical Papers, Springer, vol. 61(5), pages 1911-1937, October.
    11. Wang, Xiuli & Zhao, Shengli & Wang, Mingqiu, 2017. "Restricted profile estimation for partially linear models with large-dimensional covariates," Statistics & Probability Letters, Elsevier, vol. 128(C), pages 71-76.
    12. Yixin Fang & Heng Lian & Hua Liang, 2018. "A generalized partially linear framework for variance functions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(5), pages 1147-1175, October.
    13. Marcelo M. Taddeo & Pedro A. Morettin, 2023. "Bayesian P-Splines Applied to Semiparametric Models with Errors Following a Scale Mixture of Normals," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(2), pages 1331-1355, August.
    14. Xin Geng & Carlos Martins-Filho & Feng Yao, 2015. "Estimation of a Partially Linear Regression in Triangular Systems," Working Papers 15-46, Department of Economics, West Virginia University.
    15. Han Shang, 2014. "Bayesian bandwidth estimation for a semi-functional partial linear regression model with unknown error density," Computational Statistics, Springer, vol. 29(3), pages 829-848, June.
    16. Helmut Wasserbacher & Martin Spindler, 2024. "Credit Ratings: Heterogeneous Effect on Capital Structure," Papers 2406.18936, arXiv.org.
    17. Haotian Chen & Xibin Zhang, 2014. "Bayesian Estimation for Partially Linear Models with an Application to Household Gasoline Consumption," Monash Econometrics and Business Statistics Working Papers 28/14, Monash University, Department of Econometrics and Business Statistics.
    18. Moral, Ignacio & Rodriguez-Poo, Juan M., 2004. "An efficient marginal integration estimator of a semiparametric additive modelling," Statistics & Probability Letters, Elsevier, vol. 69(4), pages 451-463, October.
    19. Jun Zhang & Zhenghui Feng & Peirong Xu & Hua Liang, 2017. "Generalized varying coefficient partially linear measurement errors models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(1), pages 97-120, February.
    20. Wang, Dewei & Kulasekera, K.B., 2012. "Parametric component detection and variable selection in varying-coefficient partially linear models," Journal of Multivariate Analysis, Elsevier, vol. 112(C), pages 117-129.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:115:y:2017:i:c:p:103-121. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.