Empirical likelihood inference in general linear model with missing values in response and covariates by MNAR mechanism
Author
Abstract
Suggested Citation
DOI: 10.1007/s00362-019-01103-0
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- James R. Carpenter & Michael G. Kenward & Stijn Vansteelandt, 2006. "A comparison of multiple imputation and doubly robust estimation for analyses with missing data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(3), pages 571-584, July.
- Wang, Suojin & Wang, C. Y., 2001. "A note on kernel assisted estimators in missing covariate regression," Statistics & Probability Letters, Elsevier, vol. 55(4), pages 439-449, December.
- Kim, Jae Kwang & Yu, Cindy Long, 2011. "A Semiparametric Estimation of Mean Functionals With Nonignorable Missing Data," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 157-165.
- Weihua Zhao & Riquan Zhang & Yukun Liu & Jicai Liu, 2015. "Empirical likelihood based modal regression," Statistical Papers, Springer, vol. 56(2), pages 411-430, May.
- Zhao, Hui & Zhao, Pu-Ying & Tang, Nian-Sheng, 2013. "Empirical likelihood inference for mean functionals with nonignorably missing response data," Computational Statistics & Data Analysis, Elsevier, vol. 66(C), pages 101-116.
- Minna Genbäck & Elena Stanghellini & Xavier Luna, 2015. "Uncertainty intervals for regression parameters with non-ignorable missingness in the outcome," Statistical Papers, Springer, vol. 56(3), pages 829-847, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Fayyaz Bahari & Safar Parsi & Mojtaba Ganjali, 2021. "Goodness of fit test for general linear model with nonignorable missing on response variable," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(1), pages 163-196, March.
- Creemers, An & Aerts, Marc & Hens, Niel & Molenberghs, Geert, 2012. "A nonparametric approach to weighted estimating equations for regression analysis with missing covariates," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 100-113, January.
- Guo, Xu & Song, Lianlian & Fang, Yun & Zhu, Lixing, 2019. "Model checking for general linear regression with nonignorable missing response," Computational Statistics & Data Analysis, Elsevier, vol. 138(C), pages 1-12.
- Deng, Jianqiu & Yang, Xiaojie & Wang, Qihua, 2022. "Surrogate space based dimension reduction for nonignorable nonresponse," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
- Mojirsheibani, Majid, 2021. "On classification with nonignorable missing data," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
- Zhang, Yan-Qing & Tang, Nian-Sheng, 2017. "Bayesian local influence analysis of general estimating equations with nonignorable missing data," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 184-200.
- Robert D. J. Anderson, 2008. "US Consumer Inflation Expectations: Evidence Regarding Learning, Accuracy and Demographics," Centre for Growth and Business Cycle Research Discussion Paper Series 99, Economics, The University of Manchester.
- Mojirsheibani, Majid & Khudaverdyan, Arin, 2024. "A kernel-type regression estimator for NMAR response variables with applications to classification," Statistics & Probability Letters, Elsevier, vol. 215(C).
- Cheng, Hao, 2021. "Importance sampling imputation algorithms in quantile regression with their application in CGSS data," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 498-508.
- Jiwei Zhao, 2017. "Reducing bias for maximum approximate conditional likelihood estimator with general missing data mechanism," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(3), pages 577-593, July.
- Zhang, Ting & Wang, Lei, 2020. "Smoothed empirical likelihood inference and variable selection for quantile regression with nonignorable missing response," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
- Zhang, Jing & Wang, Qihua & Kang, Jian, 2020. "Feature screening under missing indicator imputation with non-ignorable missing response," Computational Statistics & Data Analysis, Elsevier, vol. 149(C).
- Aiai Yu & Yujie Zhong & Xingdong Feng & Ying Wei, 2023. "Quantile regression for nonignorable missing data with its application of analyzing electronic medical records," Biometrics, The International Biometric Society, vol. 79(3), pages 2036-2049, September.
- Jingxuan Guo & Fuguo Liu & Wolfgang Karl Härdle & Xueliang Zhang & Kai Wang & Ting Zeng & Liping Yang & Maozai Tian, 2023. "Sampling Importance Resampling Algorithm with Nonignorable Missing Response Variable Based on Smoothed Quantile Regression," Mathematics, MDPI, vol. 11(24), pages 1-30, December.
- Zhiwei Zhang & Zhen Chen & James F. Troendle & Jun Zhang, 2012. "Causal Inference on Quantiles with an Obstetric Application," Biometrics, The International Biometric Society, vol. 68(3), pages 697-706, September.
- Lingyun Lyu & Yu Cheng & Abdus S. Wahed, 2023. "Imputation‐based Q‐learning for optimizing dynamic treatment regimes with right‐censored survival outcome," Biometrics, The International Biometric Society, vol. 79(4), pages 3676-3689, December.
- Jiang, Depeng & Zhao, Puying & Tang, Niansheng, 2016. "A propensity score adjustment method for regression models with nonignorable missing covariates," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 98-119.
- Lei Jin & Suojin Wang, 2010. "A Model Validation Procedure when Covariate Data are Missing at Random," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(3), pages 403-421, September.
- Ferrari, Pier Alda & Annoni, Paola & Barbiero, Alessandro & Manzi, Giancarlo, 2011. "An imputation method for categorical variables with application to nonlinear principal component analysis," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2410-2420, July.
- Hu Yang & Ning Li & Jing Yang, 2020. "A robust and efficient estimation and variable selection method for partially linear models with large-dimensional covariates," Statistical Papers, Springer, vol. 61(5), pages 1911-1937, October.
More about this item
Keywords
General linear model; Missing data; Exponential tilting; Augmented method; Inverse probability weights method; Empirical log-likelihood ratio;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:62:y:2021:i:2:d:10.1007_s00362-019-01103-0. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.