IDEAS home Printed from https://ideas.repec.org/a/spr/alstar/v105y2021i1d10.1007_s10182-020-00367-4.html
   My bibliography  Save this article

Goodness of fit test for general linear model with nonignorable missing on response variable

Author

Listed:
  • Fayyaz Bahari

    (University of Mohaghegh Ardabili)

  • Safar Parsi

    (University of Mohaghegh Ardabili)

  • Mojtaba Ganjali

    (Shahid Beheshti University)

Abstract

In this paper, we consider a general linear model where missing data occur in the response variable with a nonignorable mechanism. Also, to deal with missing data, we assume that the probability of missing data follows a logistic model. The main purpose of this paper is to construct some test functions to check the goodness of fit of the general linear model based on the score-type test. To achieve this aim, we use two appropriate estimating models and we construct two test functions based on these models. The asymptotic properties of the test functions are obtained under the null and the alternative hypotheses based on the estimated tilting parameter. The performances of the test functions are checked by some simulation studies. Also, these methods are used to check goodness of fit of the fitted models for real data.

Suggested Citation

  • Fayyaz Bahari & Safar Parsi & Mojtaba Ganjali, 2021. "Goodness of fit test for general linear model with nonignorable missing on response variable," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(1), pages 163-196, March.
  • Handle: RePEc:spr:alstar:v:105:y:2021:i:1:d:10.1007_s10182-020-00367-4
    DOI: 10.1007/s10182-020-00367-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10182-020-00367-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10182-020-00367-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Suojin & Wang, C. Y., 2001. "A note on kernel assisted estimators in missing covariate regression," Statistics & Probability Letters, Elsevier, vol. 55(4), pages 439-449, December.
    2. Kim, Jae Kwang & Yu, Cindy Long, 2011. "A Semiparametric Estimation of Mean Functionals With Nonignorable Missing Data," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 157-165.
    3. Sun, Zhihua & Wang, Qihua & Dai, Pengjie, 2009. "Model checking for partially linear models with missing responses at random," Journal of Multivariate Analysis, Elsevier, vol. 100(4), pages 636-651, April.
    4. Zhao, Hui & Zhao, Pu-Ying & Tang, Nian-Sheng, 2013. "Empirical likelihood inference for mean functionals with nonignorably missing response data," Computational Statistics & Data Analysis, Elsevier, vol. 66(C), pages 101-116.
    5. Minna Genbäck & Elena Stanghellini & Xavier Luna, 2015. "Uncertainty intervals for regression parameters with non-ignorable missingness in the outcome," Statistical Papers, Springer, vol. 56(3), pages 829-847, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fayyaz Bahari & Safar Parsi & Mojtaba Ganjali, 2021. "Empirical likelihood inference in general linear model with missing values in response and covariates by MNAR mechanism," Statistical Papers, Springer, vol. 62(2), pages 591-622, April.
    2. Cui, Li-E & Zhao, Puying & Tang, Niansheng, 2022. "Generalized empirical likelihood for nonsmooth estimating equations with missing data," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    3. Guo, Xu & Song, Lianlian & Fang, Yun & Zhu, Lixing, 2019. "Model checking for general linear regression with nonignorable missing response," Computational Statistics & Data Analysis, Elsevier, vol. 138(C), pages 1-12.
    4. Deng, Jianqiu & Yang, Xiaojie & Wang, Qihua, 2022. "Surrogate space based dimension reduction for nonignorable nonresponse," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    5. Mojirsheibani, Majid, 2021. "On classification with nonignorable missing data," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    6. Zhang, Yan-Qing & Tang, Nian-Sheng, 2017. "Bayesian local influence analysis of general estimating equations with nonignorable missing data," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 184-200.
    7. Sun, Zhihua & Ye, Xue & Sun, Liuquan, 2015. "Consistent test of error-in-variables partially linear model with auxiliary variables," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 118-131.
    8. Creemers, An & Aerts, Marc & Hens, Niel & Molenberghs, Geert, 2012. "A nonparametric approach to weighted estimating equations for regression analysis with missing covariates," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 100-113, January.
    9. Wangli Xu & Xu Guo & Lixing Zhu, 2012. "Goodness-of-fitting for partial linear model with missing response at random," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(1), pages 103-118.
    10. Jiwei Zhao, 2017. "Reducing bias for maximum approximate conditional likelihood estimator with general missing data mechanism," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(3), pages 577-593, July.
    11. Zhang, Ting & Wang, Lei, 2020. "Smoothed empirical likelihood inference and variable selection for quantile regression with nonignorable missing response," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    12. Zhang, Jing & Wang, Qihua & Kang, Jian, 2020. "Feature screening under missing indicator imputation with non-ignorable missing response," Computational Statistics & Data Analysis, Elsevier, vol. 149(C).
    13. Jun Wang & Dianpeng Wang & Yubin Tian, 2022. "Multidimensional specification test based on non-stationary time series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(2), pages 348-372, June.
    14. Aiai Yu & Yujie Zhong & Xingdong Feng & Ying Wei, 2023. "Quantile regression for nonignorable missing data with its application of analyzing electronic medical records," Biometrics, The International Biometric Society, vol. 79(3), pages 2036-2049, September.
    15. Jingxuan Guo & Fuguo Liu & Wolfgang Karl Härdle & Xueliang Zhang & Kai Wang & Ting Zeng & Liping Yang & Maozai Tian, 2023. "Sampling Importance Resampling Algorithm with Nonignorable Missing Response Variable Based on Smoothed Quantile Regression," Mathematics, MDPI, vol. 11(24), pages 1-30, December.
    16. Jiang, Depeng & Zhao, Puying & Tang, Niansheng, 2016. "A propensity score adjustment method for regression models with nonignorable missing covariates," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 98-119.
    17. Lei Jin & Suojin Wang, 2010. "A Model Validation Procedure when Covariate Data are Missing at Random," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(3), pages 403-421, September.
    18. Xu Guo & Wangli Xu & Lixing Zhu, 2015. "Model checking for parametric regressions with response missing at random," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(2), pages 229-259, April.
    19. Lukusa, Martin T. & Phoa, Frederick Kin Hing, 2020. "A note on the weighting-type estimations of the zero-inflated Poisson regression model with missing data in covariates," Statistics & Probability Letters, Elsevier, vol. 158(C).
    20. Menggang Yu & Bin Nan, 2010. "Regression Calibration in Semiparametric Accelerated Failure Time Models," Biometrics, The International Biometric Society, vol. 66(2), pages 405-414, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:alstar:v:105:y:2021:i:1:d:10.1007_s10182-020-00367-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.