IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v58y2017i3d10.1007_s00362-015-0720-0.html
   My bibliography  Save this article

A Legendre multiwavelets approach to copula density estimation

Author

Listed:
  • O. Chatrabgoun

    (Malayer University)

  • G. Parham

    (Shahid Chamran University of Ahvaz)

  • R. Chinipardaz

    (Shahid Chamran University of Ahvaz)

Abstract

In this paper, a novel method for copula density estimation using Legendre multiwavelet is proposed. In general, copula density estimation methods based on the multiwavelet benefit from some useful properties, including they are symmetric, orthogonal and have compact support. In particular, the Legendre multiwavelet as a more general and vector-valued polynomial type of wavelets would results a more flexible and accurate approximation for the given copula density. In addition to high ability and nice properties of Legendre multiwavelet in approximation, its support is defined on unit interval, [0,1], as copulas that are normalized to have the support on the unit square and uniform marginal. We further make this approximation method more accurate by using multiresolution techniques. The comparative study reveals that the approximation proposed in this paper is more accurate than a scalar wavelet bases approximation. We eventually apply presented method to approximate multivariate distribution using pair-copula as a flexible multivariate copula to model a dataset of Norwegian financial data.

Suggested Citation

  • O. Chatrabgoun & G. Parham & R. Chinipardaz, 2017. "A Legendre multiwavelets approach to copula density estimation," Statistical Papers, Springer, vol. 58(3), pages 673-690, September.
  • Handle: RePEc:spr:stpapr:v:58:y:2017:i:3:d:10.1007_s00362-015-0720-0
    DOI: 10.1007/s00362-015-0720-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-015-0720-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-015-0720-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Autin, F. & Le Pennec, E. & Tribouley, K., 2010. "Thresholding methods to estimate copula density," Journal of Multivariate Analysis, Elsevier, vol. 101(1), pages 200-222, January.
    2. Aas, Kjersti & Czado, Claudia & Frigessi, Arnoldo & Bakken, Henrik, 2009. "Pair-copula constructions of multiple dependence," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 182-198, April.
    3. Jean-David FERMANIAN & Olivier SCAILLET, 2003. "Nonparametric Estimation of Copulas for Time Series," FAME Research Paper Series rp57, International Center for Financial Asset Management and Engineering.
    4. Ulf Schepsmeier & Jakob Stöber, 2014. "Derivatives and Fisher information of bivariate copulas," Statistical Papers, Springer, vol. 55(2), pages 525-542, May.
    5. Biau, Gérard & Wegkamp, Marten, 2005. "A note on minimum distance estimation of copula densities," Statistics & Probability Letters, Elsevier, vol. 73(2), pages 105-114, June.
    6. Genest, Christian & Masiello, Esterina & Tribouley, Karine, 2009. "Estimating copula densities through wavelets," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 170-181, April.
    7. Rada Dakovic & Claudia Czado, 2011. "Comparing point and interval estimates in the bivariate t-copula model with application to financial data," Statistical Papers, Springer, vol. 52(3), pages 709-731, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu-Ye Zou & Han-Ying Liang, 2020. "CLT for integrated square error of density estimators with censoring indicators missing at random," Statistical Papers, Springer, vol. 61(6), pages 2685-2714, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Morettin Pedro A. & Toloi Clelia M.C. & Chiann Chang & de Miranda José C.S., 2011. "Wavelet Estimation of Copulas for Time Series," Journal of Time Series Econometrics, De Gruyter, vol. 3(3), pages 1-31, October.
    2. Göran Kauermann & Christian Schellhase & David Ruppert, 2013. "Flexible Copula Density Estimation with Penalized Hierarchical B-splines," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(4), pages 685-705, December.
    3. Gery Geenens & Arthur Charpentier & Davy Paindaveine, 2014. "Probit Transformation for Nonparametric Kernel Estimation of the Copula Density," Working Papers ECARES ECARES 2014-23, ULB -- Universite Libre de Bruxelles.
    4. Nagler, Thomas & Czado, Claudia, 2016. "Evading the curse of dimensionality in nonparametric density estimation with simplified vine copulas," Journal of Multivariate Analysis, Elsevier, vol. 151(C), pages 69-89.
    5. Fantazzini, Dean, 2011. "Analysis of multidimensional probability distributions with copula functions," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 22(2), pages 98-134.
    6. Faugeras, Olivier P., 2009. "A quantile-copula approach to conditional density estimation," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2083-2099, October.
    7. Jean-David Fermanian, 2012. "An overview of the goodness-of-fit test problem for copulas," Papers 1211.4416, arXiv.org.
    8. Hirofumi Michimae & Takeshi Emura, 2022. "Bayesian ridge estimators based on copula-based joint prior distributions for regression coefficients," Computational Statistics, Springer, vol. 37(5), pages 2741-2769, November.
    9. repec:hal:wpaper:hal-00834000 is not listed on IDEAS
    10. Pedro Alberto Morettin & Clélia Maria de Castro Toloi & Chang Chiann & José Carlos Simon de Miranda, 2010. "Wavelet Smoothed Empirical Copula Estimators," Brazilian Review of Finance, Brazilian Society of Finance, vol. 8(3), pages 263-281.
    11. Nguyen, Hoang & Ausín, M. Concepción & Galeano, Pedro, 2020. "Variational inference for high dimensional structured factor copulas," Computational Statistics & Data Analysis, Elsevier, vol. 151(C).
    12. Hernández-Lobato, José Miguel & Suárez, Alberto, 2011. "Semiparametric bivariate Archimedean copulas," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2038-2058, June.
    13. Kreuzer, Alexander & Czado, Claudia, 2021. "Bayesian inference for a single factor copula stochastic volatility model using Hamiltonian Monte Carlo," Econometrics and Statistics, Elsevier, vol. 19(C), pages 130-150.
    14. Patton, Andrew, 2013. "Copula Methods for Forecasting Multivariate Time Series," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 899-960, Elsevier.
    15. Pengfei Wei & Zhenzhou Lu & Jingwen Song, 2014. "Moment‐Independent Sensitivity Analysis Using Copula," Risk Analysis, John Wiley & Sons, vol. 34(2), pages 210-222, February.
    16. Patton, Andrew J., 2012. "A review of copula models for economic time series," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 4-18.
    17. Hyun Jin Jang & Kiseop Lee & Kyungsub Lee, 2020. "Systemic risk in market microstructure of crude oil and gasoline futures prices: A Hawkes flocking model approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(2), pages 247-275, February.
    18. Tamara Teplova & Mikova Evgeniia & Qaiser Munir & Nataliya Pivnitskaya, 2023. "Black-Litterman model with copula-based views in mean-CVaR portfolio optimization framework with weight constraints," Economic Change and Restructuring, Springer, vol. 56(1), pages 515-535, February.
    19. Okhrin, Ostap & Okhrin, Yarema & Schmid, Wolfgang, 2013. "On the structure and estimation of hierarchical Archimedean copulas," Journal of Econometrics, Elsevier, vol. 173(2), pages 189-204.
    20. Stöber, Jakob & Hong, Hyokyoung Grace & Czado, Claudia & Ghosh, Pulak, 2015. "Comorbidity of chronic diseases in the elderly: Patterns identified by a copula design for mixed responses," Computational Statistics & Data Analysis, Elsevier, vol. 88(C), pages 28-39.
    21. Akakpo, Nathalie, 2017. "Multivariate intensity estimation via hyperbolic wavelet selection," Journal of Multivariate Analysis, Elsevier, vol. 161(C), pages 32-57.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:58:y:2017:i:3:d:10.1007_s00362-015-0720-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.