IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v14y1984i1p1-16.html
   My bibliography  Save this article

Central limit theorem for integrated square error of multivariate nonparametric density estimators

Author

Listed:
  • Hall, Peter

Abstract

Martingale theory is used to obtain a central limit theorem for degenerate U-statistics with variable kernels, which is applied to derive central limit theorems for the integrated square error of multivariate nonparametric density estimators. Previous approaches to this problem have employed Komlós-Major-Tusnády type approximations to the empiric distribution function, and have required the following two restrictive assumptions which are not necessary using the present approach: (i) the data are in one or two dimensions, and (ii) the estimator is constructed suboptimally.

Suggested Citation

  • Hall, Peter, 1984. "Central limit theorem for integrated square error of multivariate nonparametric density estimators," Journal of Multivariate Analysis, Elsevier, vol. 14(1), pages 1-16, February.
  • Handle: RePEc:eee:jmvana:v:14:y:1984:i:1:p:1-16
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0047-259X(84)90044-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:14:y:1984:i:1:p:1-16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.