IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v61y2020i4d10.1007_s00362-020-01162-8.html
   My bibliography  Save this article

Estimating change points in nonparametric time series regression models

Author

Listed:
  • Maria Mohr

    (University of Hamburg)

  • Leonie Selk

    (University of Hamburg)

Abstract

In this paper we consider a regression model that allows for time series covariates as well as heteroscedasticity with a regression function that is modelled nonparametrically. We assume that the regression function changes at some unknown time $$\lfloor ns_0\rfloor $$ ⌊ n s 0 ⌋ , $$s_0\in (0,1)$$ s 0 ∈ ( 0 , 1 ) , and our aim is to estimate the (rescaled) change point $$s_0$$ s 0 . The considered estimator is based on a Kolmogorov-Smirnov functional of the marked empirical process of residuals. We show consistency of the estimator and prove a rate of convergence of $$O_P(n^{-1})$$ O P ( n - 1 ) which in this case is clearly optimal as there are only n points in the sequence. Additionally we investigate the case of lagged dependent covariates, that is, autoregression models with a change in the nonparametric (auto-) regression function and give a consistency result. The method of proof also allows for different kinds of functionals such that Cramér-von Mises type estimators can be considered similarly. The approach extends existing literature by allowing nonparametric models, time series data as well as heteroscedasticity. Finite sample simulations indicate the good performance of our estimator in regression as well as autoregression models and a real data example shows its applicability in practise.

Suggested Citation

  • Maria Mohr & Leonie Selk, 2020. "Estimating change points in nonparametric time series regression models," Statistical Papers, Springer, vol. 61(4), pages 1437-1463, August.
  • Handle: RePEc:spr:stpapr:v:61:y:2020:i:4:d:10.1007_s00362-020-01162-8
    DOI: 10.1007/s00362-020-01162-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-020-01162-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-020-01162-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kristensen, Dennis, 2009. "Uniform Convergence Rates Of Kernel Estimators With Heterogeneous Dependent Data," Econometric Theory, Cambridge University Press, vol. 25(5), pages 1433-1445, October.
    2. Jushan Bai, 1994. "Least Squares Estimation Of A Shift In Linear Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 15(5), pages 453-472, September.
    3. Tianxiao Pang & Danna Zhang & Terence Tai-Leung Chong, 2014. "Asymptotic Inferences For An Ar(1) Model With A Change Point: Stationary And Nearly Non-Stationary Cases," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(2), pages 133-150, March.
    4. Jushan Bai, 1997. "Estimation Of A Change Point In Multiple Regression Models," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 551-563, November.
    5. J. Franke & J.‐P. Kreiss & E. Mammen & M. H. Neumann, 2002. "Properties of the nonparametric autoregressive bootstrap," Journal of Time Series Analysis, Wiley Blackwell, vol. 23(5), pages 555-585, September.
    6. Dennis Kristensen, 2012. "Non‐parametric detection and estimation of structural change," Econometrics Journal, Royal Economic Society, vol. 15(3), pages 420-461, October.
    7. Marie Hušková & Claudia Kirch, 2008. "Bootstrapping confidence intervals for the change‐point of time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(6), pages 947-972, November.
    8. Liebscher, Eckhard, 1996. "Strong convergence of sums of [alpha]-mixing random variables with applications to density estimation," Stochastic Processes and their Applications, Elsevier, vol. 65(1), pages 69-80, December.
    9. Maik Döring & Uwe Jensen, 2015. "Smooth change point estimation in regression models with random design," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(3), pages 595-619, June.
    10. Claudia Kirch & Birte Muhsal & Hernando Ombao, 2015. "Detection of Changes in Multivariate Time Series With Application to EEG Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1197-1216, September.
    11. Chen, Gongmeng & Choi, Yoon K. & Zhou, Yong, 2005. "Nonparametric estimation of structural change points in volatility models for time series," Journal of Econometrics, Elsevier, vol. 126(1), pages 79-114, May.
    12. Aue, Alexander & Horváth, Lajos & Hušková, Marie, 2012. "Segmenting mean-nonstationary time series via trending regressions," Journal of Econometrics, Elsevier, vol. 168(2), pages 367-381.
    13. Tianxiao Pang & Danna Zhang, 2015. "Asymptotic Inferences for an AR(1) Model with a Change Point and Possibly Infinite Variance," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 44(22), pages 4848-4865, November.
    14. Fryzlewicz, Piotr, 2014. "Wild binary segmentation for multiple change-point detection," LSE Research Online Documents on Economics 57146, London School of Economics and Political Science, LSE Library.
    15. Ferger, Dietmar & Stute, Winfried, 1992. "Convergence of changepoint estimators," Stochastic Processes and their Applications, Elsevier, vol. 42(2), pages 345-351, September.
    16. Delgado, Miguel A. & Hidalgo, Javier, 2000. "Nonparametric inference on structural breaks," Journal of Econometrics, Elsevier, vol. 96(1), pages 113-144, May.
    17. Claudia Kirch & Joseph Tadjuidje Kamgaing, 2012. "Testing for parameter stability in nonlinear autoregressive models," Journal of Time Series Analysis, Wiley Blackwell, vol. 33(3), pages 365-385, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Georgy Sofronov & Martin Wendler & Volkmar Liebscher, 2020. "Editorial for the special issue: Change point detection," Statistical Papers, Springer, vol. 61(4), pages 1347-1349, August.
    2. Maria Mohr & Natalie Neumeyer, 2021. "Nonparametric volatility change detection," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 529-548, June.
    3. Yang, Qing & Zhang, Yi, 2022. "Change-point detection for the link function in a single-index model," Statistics & Probability Letters, Elsevier, vol. 186(C).
    4. Qing Yang & Yu-Ning Li & Yi Zhang, 2020. "Change point detection for nonparametric regression under strongly mixing process," Statistical Papers, Springer, vol. 61(4), pages 1465-1506, August.
    5. Zongwu Cai & Gunawan, 2023. "A Combination Forecast for Nonparametric Models with Structural Breaks," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202310, University of Kansas, Department of Economics, revised Sep 2023.
    6. Ahmed Ghezal & Maddalena Cavicchioli & Imane Zemmouri, 2024. "On the existence of stationary threshold bilinear processes," Statistical Papers, Springer, vol. 65(6), pages 3739-3767, August.
    7. Joseph Ngatchou-Wandji & Echarif Elharfaoui & Michel Harel, 2022. "On change-points tests based on two-samples U-Statistics for weakly dependent observations," Statistical Papers, Springer, vol. 63(1), pages 287-316, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cho, Haeran & Kirch, Claudia, 2024. "Data segmentation algorithms: Univariate mean change and beyond," Econometrics and Statistics, Elsevier, vol. 30(C), pages 76-95.
    2. Leonie Selk & Natalie Neumeyer, 2013. "Testing for a Change of the Innovation Distribution in Nonparametric Autoregression: The Sequential Empirical Process Approach," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(4), pages 770-788, December.
    3. Maria Mohr & Natalie Neumeyer, 2021. "Nonparametric volatility change detection," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 529-548, June.
    4. Alessandro De Gregorio & Stefano Iacus, 2007. "Change point estimation for the telegraph process observed at discrete times," UNIMI - Research Papers in Economics, Business, and Statistics unimi-1053, Universitá degli Studi di Milano.
    5. Venkata Jandhyala & Stergios Fotopoulos & Ian MacNeill & Pengyu Liu, 2013. "Inference for single and multiple change-points in time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(4), pages 423-446, July.
    6. Marie Hušková & Zuzana Prášková & Josef G. Steinebach, 2022. "Estimating a gradual parameter change in an AR(1)-process," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(7), pages 771-808, October.
    7. Bill Russell & Dooruj Rambaccussing, 2019. "Breaks and the statistical process of inflation: the case of estimating the ‘modern’ long-run Phillips curve," Empirical Economics, Springer, vol. 56(5), pages 1455-1475, May.
    8. Jiang, Feiyu & Zhao, Zifeng & Shao, Xiaofeng, 2023. "Time series analysis of COVID-19 infection curve: A change-point perspective," Journal of Econometrics, Elsevier, vol. 232(1), pages 1-17.
    9. Iacus, Stefano M. & Yoshida, Nakahiro, 2012. "Estimation for the change point of volatility in a stochastic differential equation," Stochastic Processes and their Applications, Elsevier, vol. 122(3), pages 1068-1092.
    10. Stefano M. Iacus & Nakahiro Yoshida, 2010. "Numerical Analysis of Volatility Change Point Estimators for Discretely Sampled Stochastic Differential Equations," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 39(1‐2), pages 107-127, February.
    11. Casini, Alessandro & Perron, Pierre, 2024. "Change-point analysis of time series with evolutionary spectra," Journal of Econometrics, Elsevier, vol. 242(2).
    12. Ang, Andrew & Kristensen, Dennis, 2012. "Testing conditional factor models," Journal of Financial Economics, Elsevier, vol. 106(1), pages 132-156.
    13. Koo, Bonsoo & Seo, Myung Hwan, 2015. "Structural-break models under mis-specification: Implications for forecasting," Journal of Econometrics, Elsevier, vol. 188(1), pages 166-181.
    14. Fiteni, Inmaculada, 2004. "[tau]-estimators of regression models with structural change of unknown location," Journal of Econometrics, Elsevier, vol. 119(1), pages 19-44, March.
    15. Boldea, Otilia & Hall, Alastair R., 2013. "Estimation and inference in unstable nonlinear least squares models," Journal of Econometrics, Elsevier, vol. 172(1), pages 158-167.
    16. Qing Yang & Yu-Ning Li & Yi Zhang, 2020. "Change point detection for nonparametric regression under strongly mixing process," Statistical Papers, Springer, vol. 61(4), pages 1465-1506, August.
    17. Andrew T. Levin & Jeremy M. Piger, 2003. "Is inflation persistence intrinsic in industrial economies?," Working Papers 2002-023, Federal Reserve Bank of St. Louis.
    18. Mohitosh Kejriwal & Claude Lopez, 2013. "Unit Roots, Level Shifts, and Trend Breaks in Per Capita Output: A Robust Evaluation," Econometric Reviews, Taylor & Francis Journals, vol. 32(8), pages 892-927, November.
    19. Link, Albert N. & van Hasselt, Martijn, 2019. "On the transfer of technology from universities: The impact of the Bayh–Dole Act of 1980 on the institutionalization of university research," European Economic Review, Elsevier, vol. 119(C), pages 472-481.
    20. Perron, Pierre & Zhu, Xiaokang, 2005. "Structural breaks with deterministic and stochastic trends," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 65-119.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:61:y:2020:i:4:d:10.1007_s00362-020-01162-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.